This study was carried out to investigate the effect of air humidity and water content of medium on the growth and physiological disorder of paprika in summer hydroponics. Treatments were composed of air humidity of control (over 90%) and dehumidification (low 90%) and water content of 80% and 50%. Time domain reflectometry (TDR) sensors and dehumidifier were used in a drip irrigation system and control system of air humidity, respectively. The early growth of paprika was not affected by air humidity but increased by high water content (80%) of medium. Mean fruit weight was reduced at high air humidity and low water content (50%) of medium, but the fruit number per plant and yield were increased at low air humidity. The incidence of brown fruit stem increased with increasing air humidity and water content of medium. Rate of blossom end rot increased in the low water content medium compared with the high water content medium. The nitrogen (N) was higher content in brown fruit stem than normal stem, but calcium (Ca) was lower.
We constructed a model test apparatus to evaluate the dependence of the saturation velocity (Vs) in soils on rainfall intensity (IR). The apparatus comprises a soil box, a rainfall simulator, and measuring sensors. The model grounds (60 cm × 50 cm × 15 cm) were formed by Joomunjin standard sand with a relative density of 75%. The rainfall simulator can control the rainfall intensity to reenact the actual rainfall in a soil box. Time Domain Reflectometer (TDR) sensors and tensiometers were installed in the soils to measure changes in the volumetric water content and matric suction due to rainfall infiltration. During the tests, the soil saturation was determined by raising the groundwater table, which was formed at the bottom of the soil box. [Please check that the correct meaning has been maintained.] The wetting front did not form at the ground surface during rainfall because the soil particles were uniform and the coefficient of permeability was relatively high. Our results show that the suction stress of the soils decreased with increasing volumetric water content, and this effect was most pronounced for volumetric water contents of 20%-30%. Based on a regression analysis of the relationship between rainfall intensity and the average saturation velocity, we suggest the following equation for estimating the saturation velocity in soils: Vsavg (cm/sec) = 0.068IR (mm/hr).
The Transactions of The Korean Institute of Electrical Engineers
/
v.65
no.6
/
pp.1083-1088
/
2016
25.8kV GIS part generated by sensors to measure contact an inflow of noise depending on the extent of the measured discharge occurs often not easy. Partial discharge signal measurement sensor suitable for developing a more useful measurements at the scene to this, partial discharge waveform analysis developed a sensor, and to utilize forSensor on the development of the most important is VSWR decided to (voltage standing wave ratio) voltage standing-wave ratio less than 1.5 and decided less than at the full spectrum bands that are measured, this time Return loss, as measured value by absolute criteria 14.0 dB produced the sensor, designed to or more. UHF 1.5~0.5 GHz bandwidth spectrum to be measured in GIS. UHF bands were designed to be able to measure the best signal. Recently, 25.8kV GIS production company has been increasing variety of GIS were made open spacer in partial discharge in accordance with the not very easy to detect the signal. The sensor is designed height of four cm external spacer is attachment GIS in an influx of outside noise measurement, and be so manufactured as to facilitate the least we've done. Also, since partial discharge which occur can measure the frequency of the 170kV GIS external partial-discharge signals that occur at the scene of insulation applied to the spacer. Features, and also derived good results using global positioning. Also measured discharge point about sensors that are stable and the reliability of the development and local substation equipment failure occurring signal analysis through the discharge for the prevention of widely. There should be to believe that used.
Proceedings of the Korean Geotechical Society Conference
/
2010.09a
/
pp.736-742
/
2010
This study was conducted to characterize on the relationships of rainfall intensity and infiltration rate of rainfall dependent on unit weight change in the gneissic weathered soil by a column test equipment. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at regular time intervals. Rainfall conditions including continuous rainfall and repeated rainfall were selected in order to know the effect of antecedent rainfall. In the condition of rainfall intensity 20mm/h and the unit weights of soil as $1.35g/cm^3$, $1.55g/cm^3$ and $1.61g/cm^3$, average rainfall infiltration rate was $2.814{\times}10^{-3}cm/sec$, $1.969{\times}10^{-3}cm/sec$ and $1.252{\times}10^{-3}cm/sec$ respectively. The higher rainfall intensity and lower unit weight of soil, the faster average infiltration rate. Overflow in the column was happened except rainfall condition of rainfall intensity 20mm and soil unit weight $1.35g/cm^3$. Increasing the soil unit weight, overflowed water was increased and occurrence time was faster.
To experimentally investigate the variation of soil characteristics in slope during rainfall and the shape of slope failure, the model test was performed using soil box and artificial rainfall simulator. The model test of slope formed by the homogenous sand was performed, and the saturation pattern in the model slope due to rainfall infiltration was observed. The slope model with the inclination of 35° was set up on the slope of 30°, and the rainfall intensity of 50 mm/hr was applied in the test. The soil depth of 35 cm was selected by considering the size of soil box, and the TDR (time domain reflectometry) sensors were installed at various depths to investigate the change of soil characteristics with time. As the result of model test, the slope model during rainfall was saturated from the soil surface to the subsurface, and from the toe part to the crest part due to rainfall infiltration. That is, the toe part of slope was firstly saturated by rainfall infiltration, and then due to continuous rainfall the saturation range was enlarged from the toe part to the crest part in the slope model. The failure of slope model was started at the toe part of slope and then enlarged to the crest part, which is called as the retrogressive failure. At the end of slope failure, the collapsed area increased rapidly. Also, the mode of slope failure was rotational. Meanwhile, the slope failure was occurred when the matric suction in the slope was reached to the air entry value (AEV) estimated in soil-water characteristic curve (SWCC).
Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su;Park, Hyuek-Jin
Economic and Environmental Geology
/
v.44
no.1
/
pp.71-82
/
2011
The unsaturated soil column tests were carried out for weathered gneiss soil and weathered granite soil in order to obtain the relationship between rainfall intensity and infiltration velocity of rainfall on the basis of different unit weight conditions of soil. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at constant time interval. For the column test, three different unit weights were used as in-situ condition, loose condition and dense condition, and rainfall intensities were selected as 20 mm/h and 50 mm/h. In 20 mm/h rainfall intensity condition, average rainfall infiltration velocities for both gneiss and weathered granite soils were obtained as $2.854{\times}10^{-3}$ cm/s ~ $1.297{\times}10^{-3}$ cm/s for different unit weight values and $2.734{\times}10^{-3}$ cm/s ~ $1.707{\times}10^{-3}$ cm/s, respectively. In 50 mm/h rainfall intensity condition, rainfall infiltration velocities were obtained as $4.509{\times}10^{-3}$ cm/s ~ $2.016{\times}10^{-3}$ cm/s and $4.265{\times}10^{-3}$ cm/s ~ $3.764{\times}10^{-3}$ cm/s respectively. The test results showed that the higher rainfall intensity and the lower unit weight of soil, the faster average infiltration velocity. In addition, the weathered granite soils had faster rainfall infiltration velocities than those of the weathered gneiss soils except for the looser unit weight conditions. This is due to the fact that the weathered granite soil had more homogeneous particle size, smaller unit weight condition and larger porosity.
Unsaturated soil column tests were performed for weathered gneiss soil and weathered granite soil to assess the relationship between infiltration velocity and rainfall condition for different rainfall durations and for multiple rainfall events separated by dry periods of various lengths (herein, 'rainfall break duration'). The volumetric water content was measured using TDR (Time Domain Reflectometry) sensors at regular time intervals. For the column tests, rainfall intensity was 20 mm/h and we varied the rainfall duration and rainfall break duration. The unit weight of weathered gneiss soil was designed 1.21 $g/cm^3$, which is lower than the in situ unit weight without overflow in the column. The in situ unit weight for weathered granite soil was designed 1.35 $g/cm^3$. The initial infiltration velocity of precipitation for the two weathered soils under total amount of rainfall as much as 200 mm conditions was $2.090{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.692{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively. These rates are higher than the repeated-infiltration velocities of precipitation under total amount of rainfall as much as 100 mm conditions ($1.309{\times}10^{-3}$ to $1.871{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $1.581{\times}10^{-3}$ cm/s, respectively), because the amount of precipitation under 200 mm conditions is more than that under 100 mm conditions. The repeated-infiltration velocities of weathered gneiss soil and weathered granite soil were $1.309{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively, being higher than the first-infiltration velocities ($1.307{\times}10^{-2}$ to $1.718{\times}10^{-2}$ cm/s and $1.789{\times}10^{-2}$ to $2.070{\times}10^{-2}$ cm/s, respectively). The results reflect the effect of reduced matric suction due to a reduction in the amount of air in the soil.
Water is critically important for Tricholoma matsutake(Tm) growth because it is the major component of the mushroom by over 90%. The mushroom absorbs water through the below ground hyphal colony. Therefore, the objectives of our study were to investigate spatio-temporal water changes in Tm colonies. This study was carried out at Tm fruiting sites in Sogni Mt National Park, where the below-ground mushroom colonies have been irrigated. To identify spatial water status within the Tm soil colony soil moisture and ergosterol content were measured at six positions including a mushroom fruiting position on the line of the colony radius. To investigate temporal soil moisture changes in the soil colony, Time Domain Reflectometry(TDR) sensors were established at the non-colony and colony front edge, and water data were recorded with CR10X data logger from late August to late October. Before irrigation, whereas it was 12.8% at non-colony, the soil water content within Tm colony was 8.0% at 0-5cm from the colony front edge, 6.2% at 10-15cm and 6.5-7.5% at 20-40cm. And the content was 12.1% at 80cm distance from the colony edge, which is similar to that at the non-colony. In contrast, ergosterol content which is proportional to the live hyphal biomass was only 0.4${\mu}g$/g fresh soil at the uncolonized soil, while 4.9 $\mu\textrm{g}$/g fresh soil at the front edge where the hyphae actively grow, and 3.8 ${\mu}g$/g fresh soil at the fruiting position, l.1${\mu}g$/g at 20cm distance and 0.4${\mu}g$/g in the 40cm rear area. Generally, in the Tm fungal colony the water content changes were reversed to the ergosterol content changes. While the site was watered during August to October, the soil water contents were 13.5∼23.0% within the fungal colony, whereas it was 14.5∼26.0% at the non-colony. That is, soil water content in the colony was lower by 1.0∼3.0% than that in the non-colonized soil. Our results show that Tm colony consumes more soil water than other parts. Especially the front 30cm within the hyphal colony parts is more critical for soil water absorption.
Kang, Minseok;Cho, Sungsik;Kim, Jongho;Sohn, Seung-Won;Choi, Sung-Won;Park, Juhan
Korean Journal of Agricultural and Forest Meteorology
/
v.22
no.3
/
pp.107-116
/
2020
In this data paper, we share the dataset obtained during 2019 from the test-bed to develop soil moisture estimation technology for upland fields, which was built in Seosan and Taean, South Korea on May 3. T his dataset includes various eco-hydro-meteorological variables such as soil moisture, evapotranspiration, precipitation, radiation, temperature, humidity, and vegetation indices from the test-bed nearby the Automated Agricultural Observing System (AAOS) in Seosan operated by the Korea Meteorological Administration. T here are three remarkable points of the dataset: (1) It can be utilized to develop and evaluate spatial scaling technology of soil moisture because the areal measurement with wide spatial representativeness using a COSMIC-ray neutron sensor as well as the point measurement using frequency/time domain reflectometry (FDR/TDR) sensors were conducted simultaneously, (2) it can be used to enhance understanding of how soil moisture and crop growth interact with each other because crop growth was also monitored using the Smart Surface Sensing System (4S), and (3) it is possible to evaluate the surface water balance by measuring evapotranspiration using an eddy covariance system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.