• Title/Summary/Keyword: TDOA Measurement

Search Result 38, Processing Time 0.036 seconds

Analysis on the Contribution of FDOA Measurement Accuracy to the Performance of Combined TDOA/FDOA Localization Systems (TDOA/FDOA 복합 위치추정 시스템에서 FDOA 측정 정확도에 따른 추정 성능 기여도 분석)

  • Kim, Dong-Gyu;Kim, Yong-Hee;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.88-96
    • /
    • 2014
  • In modern electronic warfare systems, the necessity of a more accurate estimation method based on non-AOA (arrival of angle) measurement, such as TDOA and FDOA, have been increased. The previous researches using single TDOA have been carried out in terms of not only the development of emitter location algorithms but also the enhancement of measurement accuracy. Recently, however, the combined TDOA/FDOA method is of considerable interest because it is able to estimate the velocity vector of a moving emitter and acquire a pair of TDOA and FDOA measurements from a single sensor pair. In this circumstance, it is needed to derive the required FDOA measurement accuracy in order that the TDOA/FDOA combined localization system outperforms the previous single TDOA localization systems. Therefore, we analyze the contribution of FDOA measurement accuracy to emitter location, then propose the criterion based on CRLB (Cramer-Rao lower bound). Simulations are included to examine the validity of the proposed criterion by using the Gauss-Newton algorithm.

Hybrid TDOA/AOA Localization Algorithm for GPS Jammers (GPS 전파교란원 위치 추정을 위한 TDOA/AOA 복합 기법 설계)

  • Lim, Deok Won;Kang, Jae Min;Heo, Moon Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.101-105
    • /
    • 2014
  • For a localization system, the TDOA (Time Difference of Arrival) measurement and AOA (Angle of Arrival) measurement are often used for estimating target's positions. Although it is known that the accuracy of TDOA based localization is superior to that of AOA based one, it may have a poor vertical accuracy in bad geometrical conditions. This paper, therefore, proposes a localization algorithm in which the vertical position is estimated by AOA measurements and the horizontal one is estimated by TDOA measurement in order to achieve high 3D-location accuracy. And this algorithm is applied to a GPS jammer localization systems because it has a large value of the DOP (Dilution of Precision) when the jammer is located far away from the system. Simulation results demonstrate that the proposed hybrid TDOA/AOA location algorithm gives much higher location accuracy than TDOA or AOA only location.

A Design of Multiple Jammers Localization Algorithm Based on TDOA Method (TDOA기법 기반의 다중 재머 위치 추정 알고리즘 설계)

  • Kang, Hee Won;Lim, Deok Won;Heo, Moon-Beom
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.729-737
    • /
    • 2012
  • In case that multiple jammers are transmitting the signals which are the same type a general algorithm based on TDOA method cannot estimate the positions of multiple jammers because there are many TDOA measurements including true and false values. This paper, therefore, designs a new algorithm based on TDOA method to localize multiple jammers. In this algorithm, TDOA measurements are obtained by rotating the reference sensor, and then the positions of multiple jammers can be estimated by detecting congregated point among the multiple estimated positions from TDOA measurements. Through computer simulations, it is verified that this algorithm localizes the multiple jammers well. The performance of the algorithm are also analysed by changing the distance between sensors and jammer, and sampling frequency.

Effect of mobile terminal searcher on TDOA position location technique (TDOA 위치추정기법에서의 단말기 Searcher의 영향)

  • 김정태;서덕영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.1022-1027
    • /
    • 1999
  • This paper proposes method that uses Time-Difference-of-Arrival(TDOA) of Forward Pilot signals from base stations(BS) arriving at a mobile station(MS) as a position location method of CDMA MS. MS searcher does acquisition of BS Pilot signals and measurement of TDOAs. In order to do it, its processing gain is very important. Proportional relationship of the gain to the signal coherent integration interval is theoretically derived and analyzed and field test is performed to show acquisition of weak Pilot signals and stable measurements of TDOA values by increasing the gain. Also, signal strength decrease exponentially by the distance it travels. Therefore, improvement of the searcher gain makes possible to acquire Pilot signals at a location far away from BS. Variation of possible position estimation area relative to the signal strength within a cell is simulated with computer. Neglecting shadow effect it indicated necessity of detecting signals below -35dB in order to cover over 90% of cell area. Thus, efforts to maximize searcher coherent integration interval in order to acquire weak Pilot signals are required for expansion of position estimation area and measurement of stable TDOA values.

  • PDF

TDOA Measurement Based Taylor Series Design Method Considering Height Error for Real-Time Locating Systems (실시간 위치추적 시스템에서 높이 오차를 고려한 TDOA 측정치 기반 테일러 급수 설계 방법)

  • Kang, Hee-Won;Hwang, Dong-Hwan;Park, Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.804-809
    • /
    • 2010
  • This paper proposes a Taylor-series design method which reduces the height error of the tag when readers are arranged at the same height in 3-dimensional space. The proposed method consists of two steps. Firstly, the planar position is estimated by the Taylor-series method using the TDOA measurement. Next, the height is estimated from the estimated planar position. In order to show the validity of the proposed method, computer simulations were performed for the static case and linear trajectory of the tag. Results show that the proposed method gives convergent estimated position and better height estimate than the Taylor series method.

TDOA Based Moving Target Velocity Estimation in Sensor Network (센서네트워크 내에서 TDOA 측정치 기반의 이동 표적 속도 정보 추정)

  • Kim, Yong Hwi;Park, Min Soo;Park, Jin Bae;Yoon, Tae Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.445-450
    • /
    • 2015
  • In the moving target problem, the velocity information of the moving target is very important as well as the high accuracy position information. To solve this problem, active researches are being conducted recently with combine the Time Difference of Arrival (TDOA) and Frequency Delay of Arrival(FDOA) measurements. However, since the FDOA measurement is utilizing the Doppler effect due to the relative velocity between the target source and the receiver sensor, it may be difficult to use the FDOA measurement if the moving target speed is not sufficiently fast. In this paper, we propose a method for estimating the position and the velocities of the target by using only the TDOA measurements for the low speed moving target in the indoor environment with sensor network. First, the target position and heading angle are obtained from the estimated positions of two attached transmitters on the target. Then, the target angular and linear velocities are also estimated. In addtion, we apply the Instrumental Variable (IV) technique to compensate the estimation error of the estimated target velocity. In simulation, the performance of the proposed algorithm is verified.

Position Estimation Technique of High Speed Vehicle Using TLM Timing Synchronization Signal (TLM 시각 동기 신호를 이용한 고속 이동체의 위치 추정)

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Bok-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.319-324
    • /
    • 2022
  • If radio interference occurs or there is no navigation device, radio navigation of high-speed moving object becomes impossible. Nevertheless, if there are multiple ground stations and precise range measurement between the high-speed moving object and the ground station can be secured, it is possible to estimate the position of moving object. This paper proposes a position estimation method using high-precision TDOA measurement generated using TLM signal. In the proposed method, a common error of moving object is removed using the TDOA measurements. The measurements is generated based on TLM signal including SOQPSK PN symbol capable of precise timing synchronization. Therefore, since precise timing synchronization of the system has been performed, the timing error between ground stations has a very small value. This improved the position estimation performance by increasing the accuracy of the measured values. The proposed method is verified through software-based simulation, and the performance of estimated position satisfies the target performance.

Experimental Studies for Noise Source Positioning Using TDOA Algorithm (TDOA 기법을 이용한 소음원 위치파악에 관한 인구)

  • Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.138-142
    • /
    • 2006
  • Time Difference of Arrival (TDOA) algorithm was applied to sound source positioning. Using measured microphones signal, difference of distance from source to sensors were estimated by TDOA and speed of sound, and taken by navigational measurements. And iteration procedures were induced to find the actual source location. For the case of stationary and moving sound source, validation test were performed in the anechoic room. In the stationary case, the error of positioning is less then 1.3% in length scale, and it could be seen proper filtering processes were required in the application of moving sound source.

  • PDF

Applications of Rotating Noise Source Positioning Using TDOA Algorithm (회전하는 소음원의 위치추적에 대한 TDOA기법의 적용)

  • Lee, Jong-Hyun;Lee, Ja-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.483-489
    • /
    • 2009
  • The Time Difference of Arrival (TDOA) algorithm is being used widely for identifying the location of a source emanating either electrical or acoustic signal. It's application areas will not be limited to identifying the source at a fixed location, for example the origin of an earthquake, but will also include the trajectory monitoring for a moving source equipped with a GPS sensor. Most of the TDOA algorithm uses time correlation technique to find the time delay between received signals, and therefore difficult to be used for identifying the location of multiple sources. In this paper a TDOA algorithm based on cross-spectrum is developed to find the trajectory of two sound sources with different frequencies. Although its application is limited to for the sources on a disk plane, but it can be applied for identifying the locations of more than two sources simultaneously.

  • PDF

Comparisons of Error Characteristics between TOA and TDOA Positioning in Dense Multipath Environment (다중경로 환경에서의 TOA방식과 TDOA방식의 측위성능 비교)

  • Park, Ji-Won;Park, Ji-Hee;Song, Seung-Hun;Sung, Tae-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.415-421
    • /
    • 2009
  • TOA(time-of-arrival) and TDOA(time-difference-of-arrival) positioning techniques are commonly used in many radio-navigation systems. From the literature, it is known that the position estimate and error covariance matrix of TDOA obtained by GN(Gauss-Newton) method is exactly the same as that of TOA when the error source of the range measurement is only an IID white Gaussian noise. In case of geo-location and indoor positioning, however, multi-path or NLOS(non-line-of-sight) error is frequently appeared in range measurements. Though its occurrence is random, the multipath acts like a bias for a stationary user if it occurs. This paper presents the comparisons of error characteristics between TOA and TDOA positioning in presence of multi-path or NLOS error. It is analytically shown that the position estimate of TDOA is exactly the same as that of TOA even when bias errors are included in range measurements with different magnitudes. By computer simulation, position estimation error and error distribution are analyzed in presence of range bias errors.