• Title/Summary/Keyword: TDC control

Search Result 85, Processing Time 0.024 seconds

A Single DOF Magnetic Levitation System using Time Delay Control and Reduced-Order Observer

  • Park, Jung-Soo;Baek, Yoon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1643-1651
    • /
    • 2002
  • Magnetic levitation systems are required to have a large operating range in many applications. As one method to solve this problem, Time Delay Control (TDC) is applied to a single-axis magnetic levitation system in this paper A reduced-order observer is utilized to estimate states excluding measurable states in the control law. The system consists of a square air-core solenoid and a circular permanent magnet attached on a plastic ball. Theoretical magnetic forces of the system are obtained on the basis of the location of the magnet around the solenoid. The magnetic levitation force is obtained by the experiment, and then compared with the theoretical one. As the results of the control experiments, the nonlinear controller (TDC : 1-2 ㎜) has a larger operating range than the linear controller (PD control : 1-1.4 ㎜), and is superior to linear. control in the robustness to the modeling uncertainty and the performance of the disturbance rejection.

Active Compliance Control for the Rehabilitation Robot with Cable Driven Transmission (케이블 구동 메커니즘을 이용한 재활 로봇의 능동 컴플라이언스 제어)

  • Kang, Sang-Hoon;Chang, Pyung-Hun;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1823-1832
    • /
    • 2004
  • In this paper, we proposed a TDC based F/T sensorless active compliance control algorithm for a rehabilitation robot (KARES II). The preference of compliance of the disabled is presented by clinical testing at Korea National Rehabilitation Center with the disabled. The KARES II was designed to work 12 predefined tasks which are very essential for helping the disabled. Among the tasks, some contact tasks between the robot and the disabled exist. Therefore, TDC based F/T sensorless compliance control algorithm is developed for these tasks without additional cost. We verified the proposed algorithm with experiment. Also for the practical use, suitable compliance for contact tasks is chosen by clinical testing at Korea National Rehabilitation Center.

Experimental investigation of an active mass damper system with time delay control algorithm

  • Jang, Dong-Doo;Park, Jeongsu;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.863-879
    • /
    • 2015
  • This paper experimentally investigates the effectiveness and applicability of the time delay control (TDC) algorithm, which is simple and robust to unknown system dynamics and disturbance, for an active mass damper (AMD) system to mitigate the excessive vibration of a building structure. To this end, the theoretical background including the mathematical formulation of the control system is first described; and then, a thorough experimental study using a shaking table system with a small-scale three-story building structural model is conducted. In the experimental tests, the performance of the proposed control system is examined by comparing its structural responses with those of the uncontrolled system in the free vibration and forced vibration cases. It is clearly verified from the test results that the TDC algorithm embedded AMD system can effectively reduce the structural response of the building structure.

A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine (4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구)

  • 김철수;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

A Study on Active Suspension system Using Time Delay Control (시간지연 제어기법을 이용한 능동 현가시스템에 관한 연구)

  • Xuan, Dong-Ji;Kim, Jin-Wan;Zhang, Jing-Yi;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1219-1224
    • /
    • 2007
  • This is Presents experimental results of a force tracking controller for a quarter-car suspension system. The active suspension system was decomposed into two loops. At the main loop, the desired force signal is calculate by using a standard LQ design process. The Time Delay Control(TDC) design technique is then used to design the force controller such that the desired force signal is achieved in a robust manner when actuator or other plant uncertainties are present. The ADAMS controls module was used to realize the joint simulation of ADAMS and MATLAB, of which the results showed that the TDC strategy is reasonable and feasible.

  • PDF

The Development of Anti-Windup Scheme for Time Delay Control with Switching Action Using Integral Sliding Surface (적분형 슬라이딩 서피스를 이용한 TDCSA(Time Delay Control With Switching Action)의 와인드업 방지를 위한 기법의 개발)

  • Lee, Seong-Uk;Jang, Pyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1534-1544
    • /
    • 2002
  • The TDCSA(Time Delay Control with Switching Action) method, which consists of Time Delay Control(TDC) and a switching action of sliding mode control(SMC), has been proposed as a promising technique in the robust control area, where the plant has unknown dynamics with parameter variations and substantial disturbances are preset. When TDCSA is applied to the plant with saturation nonlinearity, however, the so-called windup phenomena are observed to arise, causing excessive overshoot and instability. The integral element of TDCSA and the saturation element of a plant cause the windup phenomena. There are two integral effects in TDCSA. One is the integral effect occurred by time delay estimation of TDC. Other is the integral term of an integral sliding surface. In order to solve this problem, we have proposed an anti-windup scheme method for TDCSA. The stability of the overall system has been proved for a class of nonlinear system. Experiment results show that the proposed method overcomes the windup problem of the TDCSA.

Tracking Control of 6-DOF Shaking Table with Bell Crank Structure (벨 크랭크 구조를 가지는 6 자유도 진동 시험기의 추적 제어)

  • Jeon, Duek-Jae;Park, Sung-Ho;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.306-309
    • /
    • 2005
  • This parer describes the tracking control simulation of 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. For the Joint coordinate-based control which uses lengths of each actuator, the trajectory conversion process inverse kinematics is performed. Applying the Newton-Euler approach, the dynamic equation of the shaking table is derived. To cope with nonlinear problems, time-delay control(TDC) is considered, which has been noted for its exceptional robustness to parameter uncertainties and disturbance, in addition to steady-state accuracy and computational efficiency. If the nominal model is equal to the real system, joint coordinate-based control can be very efficient. However, manufacturing tolerances installation errors and link offsets contaminate the nominal values of the kinematic parameters used in the kinematic model of the shaking table. To compensate differences between the nominal model and the real system. the joint coordinate-based control using acceleration feedback in the Cartesian coordinate space is proposed.

  • PDF

An ADHD Diagnostic Approach Based on Binary-Coded Genetic Algorithm and Extreme Learning Machine

  • Sachnev, Vasily;Suresh, Sundaram
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.111-117
    • /
    • 2016
  • An accurate approach for diagnosis of attention deficit hyperactivity disorder (ADHD) is presented in this paper. The presented technique efficiently classifies three subtypes of ADHD (ADHD-C, ADHD-H, ADHD-I) and typically developing control (TDC) by using only structural magnetic resonance imaging (MRI). The research examines structural MRI of the hippocampus from the ADHD-200 database. Each available MRI has been processed by a region-of-interest (ROI) to build a set of features for further analysis. The presented ADHD diagnostic approach unifies feature selection and classification techniques. The feature selection technique based on the proposed binary-coded genetic algorithm searches for an optimal subset of features extracted from the hippocampus. The classification technique uses a chosen optimal subset of features for accurate classification of three subtypes of ADHD and TDC. In this study, the famous Extreme Learning Machine is used as a classification technique. Experimental results clearly indicate that the presented BCGA-ELM (binary-coded genetic algorithm coupled with Extreme Learning Machine) efficiently classifies TDC and three subtypes of ADHD and outperforms existing techniques.

Improved Nonlinear Speed Control of PM Synchronous Motor Using Time Delay Control

  • Baik, In-Cheol
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.197-204
    • /
    • 2003
  • An improved nonlinear speed control of a permanent magnet synchronous motor (PMSM) is presented A quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived Using this model, to overcome the drawbacks of conventional nonlinear control scheme, the improved nonlinear control scheme which employs time delay control (TDC) scheme is proposed. To show the validity of the proposed control scheme, simulation studies are carried out and compared with the conventional control scheme.

A Design of Model-Following Time Delay Controller with Modified Error Feedback Controller (오차피드백 제어입력이 개선된 모델추종 시간지연제어기 설계)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.176-184
    • /
    • 2000
  • TDC(Time Delay Control) deals with the time-varying system parameters, unknown dynamics and unexpected disturbances using time delay. TDC can be divided into two separate parts: an auxiliary controller and a servo controller. The two controllers can be designed independently. The auxiliary controller is used to reduce sensitivity to parameter variations, nonlinear effects, and other disturbances. The servo controller is to reduce the error between the desired command and output. We propose the model-following time delay controller with modified error feedback controller. This was applied to follow the desired reference model for the uncertain time-varying overhead crane. The model generates the damped-out swinging motion trajectory to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. The control performance was evaluated through simulations. The theoretical results indicate that this control method shows excellent performance to an overhead crane with the uncertain time-varying parameters.

  • PDF