• Title/Summary/Keyword: TDC

Search Result 212, Processing Time 0.025 seconds

Engine torque and engine/automatic trandmission speed control systems using time delay control (시간지연 제어를 이용한 엔진 토크 및 엔진/자동변속기 속도 제어 시스템)

  • Song, Jae-Bok;Lee, Seung-Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 1996
  • Time delay control(TDC) law has been recently suggested as an effective control technique for nonlinear time-varying systems with uncertain dynamics and/or unpredictable disturbances. This paper focuses on the applications of the TDC algorithm to torque control of an engine system and speed control of an engine/automatic transmission system. Through the stability analysis of the engien system based on TDC, determination of the appropriate time delay and control factor is investigated. It was revealed that the size of time delay of the TDC law should be greater than that of transport delay of the system for both stability and better control performance. Simulation and experimental results for the engine torque control and engine/automatic transmission speed control systems show both relatively good command following and disturbance rejection properties. However, TDC controller shows rather slow responses when applied to the system with large transport delay.

  • PDF

Control of Humanoid Robots Using Time-Delay-Estimation and Fuzzy Logic Systems

  • Ahn, Doo Sung
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2020
  • For the requirement of accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Because of the complexity of humanoid robot dynamics, the TDC (time-delay control) is practical because it does not require a dynamic model. However, there occurs a considerable error due to discontinuous non-linearities. To solve this problem, the TDC-FLC (fuzzy logic compensator) is applied to humanoid robots. The applied controller contains three factors: a TDE (time-delay estimation) factor, a desired error dynamic factor, and FLC to suppress the TDE error. The TDC-FLC is easy to execute because it does not require complicated humanoid dynamic calculations and the heuristic fuzzy control rules are intuitive. TDC-FLC is implemented on the whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the TDC-FLC for humanoid robots.

Stability Analysis of Time Delay Controller for General Plants (일반적인 플랜트에 대한 시간지연을 이용한 제어기법의 안정성 해석)

  • Kwon, Oh-Seok;Chang, Pyung-Hun;Jung, Je-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1035-1046
    • /
    • 2002
  • Time Delay Control(TDC) is a robust nonlinear control scheme using Time Delay Estimation(TDE) and also has a simple structure. To apply TDC to a real system, we must design Time Delay Controller to guarantee stability. The earlier research stated sufficient stability condition of TDC for general plants. In that research, it was assumed that time delay is infinitely small. But, it is impossible to implement infinitely small time delay in a real system. So, in this research we propose a new sufficient stability condition of TDC for general plants with finite time delay. And the simulation results indicate that the previous sufficient stability condition does not work even for small time delay, while our proposed condition works well.

Effect of ion-pair complexation with bile acids on the bilary excretion and systemic distribution of organic drugs

  • Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.9 no.1
    • /
    • pp.49-54
    • /
    • 1986
  • Effect of sodium taurodeoxycholate (TDC) infused intravenously on the pharmacokinetics of methylene blue (MB) was studied in the rat to investigate the role of ion-pair complexation in the body on drug elimination and disposition. Distribution volume (Vd) of MB was increased significantly (p< 0.05) by TDC infusion. Considering together with the fact that apparent partition coefficient (APC) of MB between phosphate buffer (pH 7.4) and n-octanol was increased markedly by TDC, the increase in Vd seemed to be the result of decreased polarity of MB by ion-pair formation with TDC. But total body clearance (CLt) and biliary excretion clearance (CLbil) of MB were not increased significantly by TDC.

  • PDF

The Design of a 0.15 ps High Resolution Time-to-Digital Converter

  • Lee, Jongsuk;Moon, Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.334-341
    • /
    • 2015
  • This research outlines the design of a HR-TDC (High Resolution Time-to-Digital Converter) for high data rate communication systems using a $0.18{\mu}m$ CMOS process. The coarse-fine architecture has been adopted to improve the resolution of the TDC. A two-stage vernier time amplifier (2S-VTA) was used to amplify the time residue, and the gain of the 2S-VTA was larger than 64. The error during time amplification was compensated using two FTDCs (Fine-TDC) with their outputs. The resolution of the HR-TDC was 0.15 ps with a 12-bit output and the power consumption was 4.32 mW with a 1.8-V supply voltage.

A Low Power, Small Area Cyclic Time-to-Digital Converter in All-Digital PLL for DVB-S2 Application

  • Kim, Hongjin;Kim, SoYoung;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.145-151
    • /
    • 2013
  • In this paper, a low power, small area cyclic time-to-digital converter in All-Digital PLL for DVB-S2 application is presented. Coarse and fine TDC stages in the two-step TDC are shared to reduce the area and the current consumption maintaining the resolution since the area of the TDC is dominant in the ADPLL. It is implemented in a 0.13 ${\mu}m$ CMOS process with a die area of 0.12 $mm^2$. The power consumption is 2.4 mW at a 1.2 V supply voltage. Furthermore, the resolution and input frequency of the TDC are 5 ps and 25 MHz, respectively.

An Efficient FPGA Based TDC Accelerator for Deconvolutional Neural Networks (효율적인 DCNN 연산을 위한 FPGA 기반 TDC 가속기)

  • Jang, Hyerim;Moon, Byungin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.457-458
    • /
    • 2021
  • 딥러닝 알고리즘 중 DCNN(DeConvolutional Neural Network)은 이미지 업스케일링과 생성·복원 등 다양한 분야에서 뛰어난 성능을 보여주고 있다. DCNN은 많은 양의 데이터를 병렬로 처리할 수 있기 때문에 하드웨어로 설계하는 것이 유용하다. 최근 DCNN의 하드웨어 구조 연구에서는 overlapping sum 문제를 해결하기 위해 deconvolution 필터를 convolution 필터로 변환하는 TDC(Transforming the Deconvolutional layer into the Convolutional layer) 알고리즘이 제안되었다. 하지만 TDC를 CPU(Central Processing Unit)로 수행하기 때문에 연산의 최적화가 어려우며, 외부 메모리를 사용하기에 추가적인 전력이 소모된다. 이에 본 논문에서는 저전력으로 구동할 수 있는 FPGA 기반 TDC 하드웨어 구조를 제안한다. 제안하는 하드웨어 구조는 자원 사용량이 적어 저전력으로 구동 가능할 뿐만 아니라, 병렬 처리 구조로 설계되어 빠른 연산 처리 속도를 보인다.

Review on controllers with a time delay estimation (시간지연추정제어기에 관한 리뷰)

  • Lee H.J.;Yoon J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1120-1124
    • /
    • 2005
  • We reviewed controllers with a time delay estimation in this paper. Time delay control (TDC) and sliding mode control (SMC) are well known robust control schemes. Basically, the TDC has a main characteristic called a time delay estimation from which we can estimate the total uncertainty of a system. . The TDC causes the stick-slip in the case of systems with a friction. The so-called TDCSA which are short for TDC with switching action was developed to reduce the stick-slip. The TDC has the additional switching action term in the TDC structure. In the other hand, the SMC dose not have a time delay estimation but instead it can estimate the system uncertainty through the switching action. The SMC has a difficulty to estimate the total uncertainty of a system because it does not have a time delay estimation. In order to solve the difficulty, some control schemes were developed. Among them, we need to focus our attention on two control schemes: SMCPE and SMCTE, which are short for sliding mode control with a perturbation estimation and sliding mode control with a time delay estimation, respectively. In this paper, we analyzed and compared the characteristic of above three controllers. Even though the motives for the development of three control schemes are different, three control schemes have much in common in terms of their controller structures.

  • PDF

Robust Trajectory Control of Robot Manipulators Using Time Delay Estimation and Internal Model Concept (로봇 매니퓰레이터를 위한 시간지연추정과 내부모델개념을 결합한 강인제어기에 관한 연구)

  • Cho Geon Rae;Chang Pyung-Hun;Jung Je Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1075-1086
    • /
    • 2004
  • In this paper, Time Delay Control(TDC) for robot manipulators is analyzed and its problems are founded. In order to remedy the problems, the enhanced controller is proposed and analyzed. The effect of friction associated with TDC is reported and its cause is presented. Through the analysis, simulation and experiment, it is shown that the friction effect causes serious degradation in control performance and that it is a result of the error of Time Delay Estimation(TDE) in TDC. In order to remedy the problems, TDC combined with Internal Model Control(IMC) concept is proposed. The proposed compensator is effective enough to handle the bad effect of friction, and is so simple and efficient as to match positive attribute of TDC. The simulation and experimental results show the effectiveness of proposed controller against the friction of the robot manipulators.

Implementation of pressure monitoring system(PMS) for ship's engine performance analysis(SEPA) based on the web (웹기반 선박엔진 성능분석용 압력모니터링 시스템 구현)

  • Yang, Hyun-Suk;Kwon, Hyuk-Joo;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.929-935
    • /
    • 2014
  • This paper is study on the pressure monitoring system(PMS) for ship's engine performance analysis( SEPA) based on web, with high speed and accuracy. This system is composed of pressure sensor, monitoring module with multi channel A/D converter, TCP/IP and satellite internet communication system. Existing domestic products measure cylinder pressure when piston of first explosive cylinder reached TDC(the top dead center) point and then measure next cylinder pressure manually each angle divided by a constant rotating interval. But presented system monitors in the local and web computer, using pressure information transmitted from pressure sensor installed on each engine. In this system, it is possible to increase the accuracy of the engine performance analysis because not only each TDC points but cylinder pressures synchronized with the TDC points could be measured in real time, accurately. And therefore, it may be used in a various diagnosis of main engines, such as deviations of each cylinder maximum pressures(Pmax) and the TDC firing positions and combustion conditions.