• Title/Summary/Keyword: TCP-friendly

Search Result 60, Processing Time 0.027 seconds

TCP Friendly Rate Control for MPEG-4 Video Transmission in Wireless Networks (무선 네트워크에서 MPEG-4 비디오 전송을 위한 TCP Friendly 전송율 제어 기법)

  • Bai, Song-Nan;Lee, Do-Hyeon;Jung, Myong-Hwan;Jung, Jae-Il
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.749-750
    • /
    • 2006
  • TFRC is an equation-based rate control scheme originally developed for video transmission over wired networks. When applied to the wireless networks, it suffers from performance degradation. In this thesis, we propose an end-to-end loss discrimination algorithm to improve the performance of TFRC over wireless networks. The proposed WLD-TFRC scheme combines Spike and WLD(Wireless Loss Discount) algorithms to discriminate wireless loss from congestion loss, and to discount feedback loss event rate. Experimental results show that WLD-TFRC outperforms the original TFRC and effectively reduce the degradation of the video quality caused by the wireless link status.

  • PDF

Improving the Fairness of TFRC Congestion Control Protocol (TFRC 혼잡제어 프로토콜 공정성 개선 방안)

  • 조경연;김영복;장주욱
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.406-408
    • /
    • 2002
  • TFRC 혼잡제어는 멀티미디어, 인터넷 전화등 실시간성이 강조된 서비스에 적합한 프로토콜이다. 그러나 이러한 TCP-friendly 혼잡제어 알고리즘은 네트워크 혼잡이 심해져 손실률이 커짐에 따라 TCP와의 공정성(fairness)이 떨어지는 문제점을 가지고 있다. 이러한 문제를 해결하기 위해서는 전송률을 결정하는 제어식을 높은 손실률일 때 보정을 해주어야 한다. 본 논문에서는 TFRC 혼잡제어 알고리즘의 전송률 결정에 있어서 중요한 변수인 재전송 타임아웃 값(RTO)의 재 정의를 통하여 전송률을 보정함으로서 공정성 하락을 방지함을 보이고, 시뮬레이션을 통하여 이를 입증한다.

  • PDF

An ACK-based Redundancy control algorithm in the Periodic FEC (Periodic FEC를 위한 ACK 기반 중복 정보 제어 기법)

  • 이소현;지명경;최태욱;정기동
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.679-681
    • /
    • 2001
  • 인터넷 화상 전화와 같이 비디오 데이터를 압축하여 실시간 전송하는 응용 프로그램의 사용 시 일어날 수 있는 비디오 데이터 오류 전파를 방지하기 위한 대표적인 기법으로 FEC를 향상시킨 Periodic FEC가 있다. 본 논문에서는 ACK 메시지를 기반으로 연속적인 패킷 손실을 예측하여 PFEC의 중복 정보(redundant information)외 전송량 조절이 가능한ACK기반 중복 정보 제어 기법을 제안한다. 또한 대용량의 멀티미디어 데이터 전송 시 발생할 수 있는 congestion을 제어하기 위해 TCP와 공정하게 대역폭을 공유하는 TCP-friendly rate control 기법을 고려하여 PFEC의 중복 정보의 양을 네트워크 상태에 적응적으로 조절하는 기법을 제안한다.

  • PDF

The Distributed Transport Platform for Real-Time Multimedia Stream (실시간 멀티미디어 스트림을 위한 분산 전송 플랫폼)

  • 송병훈;정광수;정형석
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.2
    • /
    • pp.260-269
    • /
    • 2003
  • The traditional distributed object middleware platform is not suitable for the transmission of stream data, because RPC(Remote Procedure Call)-based message transmission have a great overhead. Therefore, the OMG(Object Management Group) proposes the AV(Audio and Video) stream reference model for streaming on the distributed object middleware platform. But, this reference model has not a detail of implementation. Particularly it also has not congestion control scheme for improvement of network efficiency on the real network environment. It is a very important and difficult technical issue to provide the stream transmission platform with advanced congestion control scheme. In this paper, we propose an architecture of a distributed stream transport platform and deal with the design and implementation concept of our proposed platform. Also, we present a mechanism to improve streaming utilization by SRTP(Smart RTP). SRTP is our proposed TCP-Friendly scheme.

Capacity Analysis of Internet Protocol Television (IPTV) over IEEE 802.11ac Wireless Local Area Networks (WLANs)

  • Virdi, Chander Kant;Shah, Zawar;Levula, Andrew;Ullah, Imdad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Internet Protocol Television (IPTV) has emerged as a personal entertainment source for home users. Streaming IPTV content over a wireless medium with good Quality of Service (QoS) can be a challenging task as IPTV content requires more bandwidth and Wireless Local Area Networks (WLANs) are susceptible to packet loss, delay and jitter. This research presents the capacity of IPTV using User Datagram Protocol (UDP) and TCP Friendly Rate Control (TFRC) over IEEE 802.11ac WLANs in good and bad network conditions. Experimental results show that in good network conditions, UDP and TFRC could accommodate a maximum of 78 and 75 Standard Definition Television (SDTV) users, respectively. In contrast, 15 and 11 High-Definition Television (HDTV) users were supported by UDP and TFRC, respectively. Performance of UDP and TFRC was identical in bad network conditions and same number of SDTV and HDTV users were supported by TFRC and UDP. With background Transmission Control Protocol (TCP) traffic, both UDP and TFRC can support nearly the same number of SDTV users. It was found that TFRC can co-exist fairly with TCP by giving more throughput to TCP unlike UDP.

Media-aware and Quality-guaranteed Rate Adaptation Algorithm for Scalable Video Streaming (미디어 특성과 네트워크 상태에 적응적인 스케일러블 비디오 스트리밍 기법에 관한 연구)

  • Jung, Young-H.;Kang, Young-Wook;Choe, Yoon-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.517-525
    • /
    • 2009
  • We propose a quality guaranteed scalable video streaming service over the Internet using a new rate adaptation algorithm. Because video data requires much more bandwidth rather than other types of service, therefore, quality of video streaming service should be guaranteed while providing friendliness with other service flows over the Internet. To successfully provide this, we propose a framework for providing quality-guaranteed streaming service using two-channel transport layer and rate adaptation of scalable video stream. In this framework, baseline layer for scalable video is transmitted using TCP transport for minimum qualify service. Enhancement layers are delivered using TFRC transport with layer adaptation algorithm. The proposed framework jointly uses the status of playout buffer in the client and the encoding rate of layers in media contents. Therefore, the proposed algorithm can remarkably guarantee minimum quality of streaming service rather than conventional approaches regardless of network congestion and the encoding rate variation of media content.

Delay-based Rate Control for Multimedia Streaming in the Internet (인터넷에서 멀티미디어 스트리밍을 위한 지연 시간 기반 전송률 제어)

  • Song Yong-Hon;Kim Nam-Yun;Lee Bong-Gyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.829-837
    • /
    • 2006
  • Due to the internet network congestion, packets may be dropped or delayed at routers. This phenomenon degrades the quality of streaming applications that require high QoS requirements. The proposed algorithm in this paper, called DBRC(Delay-Based Rate Control), tries to cause router queue occupancy to reach a steady state or equilibrium by throttling the transmission rate of the multimedia traffics when network delays tend to increase and also probing for more bandwidth when network delays tend to decrease. Simulation results show that the proposed algorithm provides smooth transmission rate, nearly constant delay and low packet loss rates, compared with TFRC(TCP Friendly Rate Control) that is one of dominant multimedia congestion control algorithms.

Adaptive Rate Control Scheme based on Cross-layer for Improving the Quality of Streaming Services in the Wireless Networks (무선 네트워크에서 스트리밍 서비스의 품질향상을 위한 Cross-layer 기반 적응적 전송률 조절 기법)

  • Kim, Sujeong;Chung, Kwangsue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1609-1617
    • /
    • 2013
  • TFRC(TCP-Friendly Rate Control) has a performance degradation in wireless networks because it performs congestion control by judging all the losses occurred in wireless networks as a congestion indicator. It is also degraded by the increased Round Trip Time(RTT) due to packet retransmission and contention overhead in the link layer. In this paper, we propose an adaptive rate control scheme based on cross-layer to improve the quality of streaming services in the wireless networks. It provides new RTT estimation and loss discrimination methods to improve transmission rate of TFRC. The simulation results show that the proposed scheme can improve the performance of TFRC.

A Real-Time Multimedia Data Transmission Rate Control Using Neural Network Prediction Model (신경 회로망 예측 모델을 이용한 실시간 멀티미디어 데이터 전송률 제어)

  • Kim, Yong-Seok;Kwon, Bang-Hyun;Chong, Kil-To
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2B
    • /
    • pp.44-52
    • /
    • 2005
  • This paper proposes a neural network prediction model to improve the valid packet transmission rate for the QoS(Quality of Service) of multimedia transmission. The Round Trip Time(RTT) and Packet Loss Rate(PLR) are predicted using a neural network and then the transmission rate is decided based on the predicted RTT and the PLR. The suggested method will improve the transmission rate since it uses the rate control factors corresponding to time of data is being transmitted, while the conventional one uses the transmission rate determined based on the past informations. An experimental set-up has been established using a Linux PC system, and the multimedia data are transmitted using UDP protocol in real time. The valid transmitted packets are about 5% higher than the one in the conventional TCP-Friendly congestion control method when the suggested algorithm was applied.

Biodegradability Index Development Based on Aerobic Biodegradation, Anaerobic Biodegradation, and Toxicity Test (호기성 분해, 혐기성 분해 및 독성을 고려한 생분해도 지표 개발)

  • Yoo, Kyu-Seon;Shin, Hang-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.603-608
    • /
    • 2010
  • More than 8 millions of chemical have been used for human activities and lots of chemicals can not be degraded by microbial activities in this world. To show the biodegradability of a chemical, biodegradability index (B.I.) is suggested using aerobic biodegradability by $BOD_5$/COD, anaerobic biodegradability by methane potential (M.P.) and toxicity by the luminiscent bacteria. In this study, PVA (polyvinyl alcohol), HEC (hydroxy ethyl cellulose), 2,4,6-TCP (tri-chloro phenol) and 2,4-DCP (di-chloro phenol) are used for test chemicals. Though they show little toxicity, PAV and HEC have low B.I. because they are polymers having high molecular weight. That means that there are no bacteria that has enzyme to degrade polymer molecules. Also, anaerobic treatment is suggested better than aerobic treatment from B.I. 2,4,6-TCP and 2,4-DCP show high toxicity and have low B.I. Their low biodegradabilities seem to be originated from their toxicities. If B.I. is used in wastewater treatment, better treatment process can be suggested and finally it can lead our society to make more environment-friendly chemicals.