• Title/Summary/Keyword: TCP fairness

Search Result 132, Processing Time 0.033 seconds

A TCP Fairness Improvement Scheme for Wired and Wireless Heterogeneous Networks (유무선 혼합 네트워크에서의 TCP Fairness 향상 기법)

  • Cho, Sung-Joon;Kim, Seong-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.34-40
    • /
    • 2006
  • Multiple wireless devices in wired and wireless heterogeneous networks communicate with counterparts via a single Access Point (AP). In this case, the AP becomes a bottleneck of the network, therefore buffer overflows occur frequently and result in TCP performance degradation. In this paper, the new algorithm that prevents buffer overflows at AP and enhances TCP fairness is proposed. Depending on the buffer usage of AP, the new algorithm adaptively controls each TCP senders' transmission rate, prevents buffer overflows and thus guarantees improved TCP fairness. It is proved that the algorithm makes better of TCP throughput and fairness by preventing buffer overflows.

  • PDF

Instantaneous Fairness of TCP in Heterogeneous Traffic Wireless LAN Environments

  • Jung, Young-Jin;Park, Chang Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3753-3771
    • /
    • 2016
  • Increasingly, numerous and various Internet-capable devices are connected in end user networks, such as a home network. Most devices use the combination of TCP and 802.11 DCF as a system platform, but whereas some devices such as a streaming video persistently generate traffic, others such as a motion sensor do so only intermittently with lots of pauses. This study addresses the issue of performance in this heterogeneous traffic wireless LAN environment from the perspective of fairness. First, instantaneous fairness is introduced as a notion to indicate how immediately and how closely a user obtains its fair share, and a new time-based metric is defined as an index. Second, extensive simulation experiments have been made with TCP Reno, Vegas, and Westwood to determine how each TCP congestion control corresponds to the instantaneous fairness. Overall, TCP Vegas yields the best instantaneous fairness because it keeps the queue length shorter than the other TCPs. In the simulations, about 60% of a fair share of the effective user bandwidth is immediately usable in any circumstance. Finally, we introduce two simple strategies for adjusting TCP congestion controls to enhance instantaneous fairness and validate them through simulation experiments.

A TCP Fairness Guarantee Scheme with Dynamic Advertisement Window Adjustment for Mobile Broadband Wireless Access Networks (이동 광대역 무선 접속 네트워크에서 동적 Advertisement Window 조절을 통한 TCP Fairness 보장 기법)

  • Kim, Seong-Chul;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.154-163
    • /
    • 2008
  • In a mobile broadband wireless access (MBWA) network, many users access a base station (BS), which relays data transferred from high-speed wired network to low-speed wireless network. For this difference of their data rate, a BS suffers from the lack of its buffer space when many users run multiple applications at the same time, and thus packet losses occur. TCP, which guarantees end-to-end reliability, is used as transport protocol also in wireless networks. But TCP lowers their transmission rate incorrectly and frequently whenever packet losses occur. And they increase their transmission rate differently with each other; finally TCP throughput of each TCP flow varies largely, and then TCP fairness goes worse. In this paper, a scheme that controls packet transmission rate adaptively according to TCP flows' transmission rate, that prevents buffer overflows at BS, and that guarantees TCP fairness at a certain degree is proposed. As it is analyzed by simulations, the proposed scheme enhances TCP fairness by maintaining TCP throughput of each TCP sender similarly with each other.

  • PDF

Performance Analysis of Random Early Dropping Effect at an Edge Router for TCP Fairness of DiffServ Assured Service

  • Hur Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4B
    • /
    • pp.255-269
    • /
    • 2006
  • The differentiated services(DiffServ) architecture provides packet level service differentiation through the simple and predefined Per-Hop Behaviors(PHBs). The Assured Forwarding(AF) PHB proposed as the assured services uses the RED-in/out(RIO) approach to ensusre the expected capacity specified by the service profile. However, the AF PHB fails to give good QoS and fairness to the TCP flows. This is because OUT(out- of-profile) packet droppings at the RIO buffer are unfair and sporadic during only network congestion while the TCP's congestion control algorithm works with a different round trip time(RTT). In this paper, we propose an Adaptive Regulating Drop(ARD) marker, as a novel dropping strategy at the ingressive edge router, to improve TCP fairness in assured services without a decrease in the link utilization. To drop packets pertinently, the ARD marker adaptively changes a Temporary Permitted Rate(TPR) for aggregate TCP flows. To reduce the excessive use of greedy TCP flows by notifying droppings of their IN packets constantly to them without a decrease in the link utilization, according to the TPR, the ARD marker performs random early fair remarking and dropping of their excessive IN packets at the aggregate flow level. Thus, the throughput of a TCP flow no more depends on only the sporadic and unfair OUT packet droppings at the RIO buffer in the core router. Then, the ARD marker regulates the packet transmission rate of each TCP flow to the contract rate by increasing TCP fairness, without a decrease in the link utilization.

TCP Uplink Station-Level Fairness Support in IEEE 802.11 Networks (IEEE 802.11 네트워크에서 TCP 업링크 스테이션 간 공평성 지원)

  • Jun, Kyoog-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.553-558
    • /
    • 2009
  • There have been various research efforts to support the fairness between uplink and downlink of TCP streams in IEEE 802.11 networks. Existing methods, which have been effective for the fairness, however could not provide the solution for the unfairness caused by the situation in which a station which is having multiple TCP uplink streams monopolizes the uplink bandwidth. This paper proposes a method that AP allocates token buckets for each uplink TCP station. The proposed method is also able to support the fairness between the uplink and downlink. To remedy the underutilization which may happen under token bucket-based schemes, it allows the movement of redundant tokens among the token buckets. By controlling the token movements, it can balance the fairness and the utilization. Simulation results show that the proposed method is able to support the fairness of the TCP uplink stations, as well as the fairness between the uplink and downlink.

A Fairness Guarantee Scheme for Wired and Wireless Heterogeneous Networks (유무선 혼합 네트워크를 위한 TCP Fairness 보장 기법)

  • Kim, Seong-Chul;Cho, Yong-Bum;Moon, Il-Young;Cho, Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.549-552
    • /
    • 2005
  • Multiple wireless devices in wired and wireless heterogeneous networks communicate with counterparts via a single access point (AP). In this case, the AP becomes a bottleneck of the network, therefore buffer overflows occur frequently and result in TCP performance degradation. In this paper, a new algorithm that prevents buffer overflows at AP and enhances TCP fairness is proposed. Depending on the buffer usage of AP, the new algorithm adaptively controls each TCP senders' transmission rate, prevents buffer overflows and thus guarantees improved TCP fairness. It is proved that the algorithm makes better of TCP throughput and fairness by preventing buffer overflows.

  • PDF

A New Queueing Algorithm for Improving Fairness between TCP Flows (TCP 플로우 간의 공정성 개선을 위한 새로운 큐잉 알고리즘)

  • Chae, Hyun-Seok;Choi, Myung-Ryul
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.235-244
    • /
    • 2004
  • TCP Vegas version provides better performance and more stable services than TCP Tahoe and Reno versions, which are widely used in the current Internet. However, in the situation where TCP Vegas and Reno share the bottleneck link, the performance of TCP Vegas is much smaller than that of TCP Reno. This unfairness is due to the difference of congestion control mechanisms of each TCP use. Several studies have been executed in order to solve this unfairness problem. In this paper, we analyze the minimum window size to maintain the maximum TCP performance of link bandwidth. In addition, we propose an algorithm which maintains the TCP performance and improves fairness by selective packet drops in order to allocate proper window size of each TCP connections. To evaluate the performance of the proposed algorithm, we have measured the number of data bytes transmitted between end-to-end systems by each TCP connections. The simulation results show that the proposed algorithm maintains the maximum TCP performance and improves the fairness.

A Fair Scalable Inter-Domain TCP Marker for Multiple Domain DiffServ Networks

  • Hur, Kyeong;Eom, Doo-Seop
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.338-350
    • /
    • 2008
  • The differentiated services (DiffServ) is proposed to provide packet level service differentiations in a scalable manner. To provide an end-to-end service differentiation to users having a connection over multiple domains, as well as a flow marker, an intermediate marker is necessary at the edge routers, and it should not be operated at a flow level due to a scalability problem. Due to this operation requirement, the intermediate marker has a fairness problem among the transmission control protocol (TCP) flows since TCP flows have intrinsically unfair throughputs due to the TCP's congestion control algorithm. Moreover, it is very difficult to resolve this problem without individual flow state information such as round trip time (RTT) and sending rate of each flow. In this paper, to resolve this TCP fairness problem of an intermediate marker, we propose a fair scalable marker (FSM) as an intermediate marker which works with a source flow three color marker (sf-TCM) operating as a host source marker. The proposed fair scalable marker improves the fairness among the TCP flows with different RTTs without per-flow management. Through the simulations, we show that the FSM can improve TCP fairness as well as link utilization in multiple domain DiffServ networks.

A Modified REDP Aggregate Marker for improving TCP Fairness of Assured Services

  • Hur Kyeong;Eom Doo-Seop;Tchah Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.86-100
    • /
    • 2004
  • To provide the end-to-end service differentiation for assured services, the random early demotion and promotion (REDP) marker in the edge router at each domain boundary monitors the aggregate flow of the incoming in-profile packets and demotes in-profile packets or promotes the previously demoted in-profile packets at the aggregate flow level according to the negotiated interdomain service level agreement (SLA). The REDP marker achieves UDP fairness in demoting and promoting packets through random and early marking decisions on packets. But, TCP fairness of the REDP marker is not obvious as for UDP sources. In this paper, to improve TCP fairness of the REDP marker, we propose a modified REDP marker where we combine a dropper, meters and a token filling rate configuration component with the REDP marker. To make packet transmission rates of TCP flows more fair, at the aggregate flow level the combined dropper drops incoming excessive in-profile packets randomly with a constant probability when the token level in the leaky bucket stays in demotion region without incoming demoted in-profile packets. Considering the case where the token level cannot stay in demotion region without the prior demotion, we propose a token filling rate configuration method using traffic meters. By using the token filling rate configuration method, the modified REDP marker newly configures a token filling rate which is less than the negotiated rate determined by interdomain SLA and larger than the current input aggregate in-profile traffic rate. Then, with the newly configured token filling rate, the token level in the modified REDP marker can stay in demotion region pertinently fir the operation of the dropper to improve TCP fairness. We experiment with the modified REDP marker using ns2 simulator fur TCP sources at the general case where the token level cannot stay in demotion region without the prior demotion at the negotiated rate set as the bottleneck link bandwidth. The simulation results demonstrate that through the combined dropper with the newly configured token filling rate, the modified REDP marker also increases both aggregate in-profile throughput and link utilization in addition to TCP fairness improvement compared to the REDP marker.

Performance Analysis of REDP Marker with a combined Dropper for improving TCP Fairness of Assured Services

  • Kyeong Hur;Lee, Yeonwoo;Cho, Choon-Gen;Park, Hyung-Kun;Eom, Doo-Seop;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7B
    • /
    • pp.711-721
    • /
    • 2004
  • To provide the end-to-end service differentiation for assured services, the random early demotion and promotion (REDP) marker in the edge router at each domain boundary monitors the aggregate flow of the incoming in-profile packets and demotes in-profile packets or promotes the previously demoted in-profile packets at the aggregate flow level according to the negotiated interdomain service level agreement (SLA). The REDP marker achieves UDP fairness in demoting and promoting packets through random and early marking decisions on packets. But, TCP fairness of the REDP marker is not obvious as fur UDP sources. In this paper, to improve TCP fairness of the REDP marker, we combine a dropper with the REDP marker. To make packet transmission rates of TCP flows more fair, at the aggregate flow level the combined dropper drops incoming excessive in-profile packets randomly with a constant probability when the token level in the leaky bucket stays In demotion region without incoming demoted in-profile packets. It performs a dropping in the demotion at a domain boundary only if there is no prior demotion. The concatenate dropping at multiple domains is avoided to manifest the effect of a dropping at a domain boundary on TCP fairness. We experiment with the REDP marker with the combined dropper using ns2 simulator for TCP sources. The simulation results show that the REDP marker with the combined dropper improves TCP fairness in demoting and promoting packets by generating fair demoted in-profile traffic compared to the REDP marker. The effectiveness of the selected drop probability is also investigated with showing its impact on the performance of the REDP marker with the combined dropper.