• Title/Summary/Keyword: TCO(Transparent Conducting Oxide)

Search Result 142, Processing Time 0.035 seconds

Optimization of GZO/Ag/GZO Multilayer Electrodes Obtained by Pulsed Laser Deposition at Room Temperature

  • Cheon, Eunyoung;Lee, Kyung-Ju;Song, Sang Woo;Kim, Hwan Sun;Cho, Dae Hee;Jang, Ji Hun;Moon, Byung Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.336.2-336.2
    • /
    • 2014
  • Indium Tin Oxide (ITO) thin films are used as the Transparent Conducting Oxide (TCO), such as flat panel display, transparent electrodes, solar cell, touch screen, and various optical devices. ZnO has attracted attention as alternative materials to ITO film due to its resource availability, low cost, and good transmittance at the visible region. Recently, very thin film deposition is important. In order to minimize the damage caused by bending. However, ZnO thin film such as Ga-doped ZnO(GZO) has poor sheet resistance characteristics. To solve this problem, By adding the conductive metal on films can decrease the sheet resistance and increase the mobility of the films. In this study, We analyzed the electrical and optical characteristics of GZO/Ag/GZO (GAG) films by change in Ag and GZO thickness.

  • PDF

ITZO 박막의 전자적 및 광학적 특성

  • Lee, Seon-Yeong;Denny, Yus Rama;Gang, Hui-Jae;Heo, Seong;Jeong, Jae-Gwan;Lee, Jae-Cheol;Chae, Hong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.324-324
    • /
    • 2012
  • 투명전도체(Transparent Conducting Oxides: TCOs)는 일반적으로 면저항이 $103{\Omega}/sq$ 이하로 전기가 잘 통하며, 가시광선영역인 380~780 nm에서의 투과율이 80% 이상이고, 3.2eV 이상의 밴드갭을 가지는 재료로써, 전기전도도와 가시광선영역에서 투과성이 높아 전기적, 광학적 재료로 관심을 받아 다년간 연구대상이 되어오고 있다. 현재 가장 널리 사용되고 있는 투명전도체(Transparent Conducting Oxides: TCOs) 소재로는 Indium Tin Oxide (ITO)가 가장 각광받고 있지만, Indium의 가격상승과 박막의 열처리를 통해 저항이 증가하는 단점을 가지고 있어 이를 대체 할 새로운 소재 개발이 필요한 상황이다. 그러므로 투명전도체 소재 개발에 있어서 가장 중요한 연구과제는 Indium Tin Oxide(ITO)의 단점을 개선시키고 안정된 고농도의 In-Zn-Sn-O(ITZO) 박막을 성장시키는 것이다. 본 연구에서는 RF스퍼터링법에 의하여 Si wafer에 In-Zn-Sn-O(IZTO)를 $350{\AA}$ 만큼 증착시키고, 1시간 동안 $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$로 각각 열처리 하였다. 박막의 전자적, 광학적 특성은 XPS(X-ray Photoelectron Spectroscopy), REELS(Reflection Electron Energy Loss Spectroscopy)를 이용하여 연구하였다. XPS측정결과, ITZO박막은 In-O, Sn-O and Zn-O의 결합을 가지고 있고, 박막의 열처리를 통해 $400^{\circ}C$에서 Zn2p의 피크가 가장 크게 나타나는 반면 In3d와 Sn3d는 열처리를 했을 때가 Room Temperature에서 보다 피크가 작아지는 것을 확인하였다. 이는 $400^{\circ}C$에서 Zn가 표면에 편석됨을 나타낸다. 그리고 REELS를 이용해 Ep=1500 eV에서의 밴드갭을 얻어보면, 밴드갭은 $3.25{\pm}0.05eV$로 온도에 크게 변화하지 않았다. 또한 QUEELS -Simulation에 의한 광학적 특성 분석 결과, 가시광선영역인 380nm~780nm에서의 투과율이 83%이상으로 투명전자소자로의 응용이 가능하다는 것을 보여주었다.

  • PDF

Properties of ZnO:Ga Transparent Conducting Film Fabricated on O2 Plasma-Treated Polyethylene Naphthalate Substrate (산소플라즈마 전처리된 Polyethylene Naphthalate 기판 위에 증착된 ZnO:Ga 투명전도막의 특성)

  • Kim, Byeong-Guk;Kim, Jeong-Yeon;Oh, Byoung-Jin;Lim, Dong-Gun;Park, Jae-Hwan;Woo, Duck-Hyun;Kweon, Soon-Yong
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.175-180
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used for optoelectronic applications. Among TCO materials, zinc oxide (ZnO) has been studied extensively for its high optical transmission and electrical conduction. In this study, the effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films (GZO) on polyethylene naphthalate (PEN) substrate were studied. The $O_2$ plasma pretreatment process was used instead of conventional oxide buffer layers. The $O_2$ plasma treatment process has several merits compared with the oxide buffer layer treatment, especially on a mass production scale. In this process, an additional sputtering system for oxide composition is not needed and the plasma treatment process is easily adopted as an in-line process. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PEN substrate and the GZO film, the $O_2$ plasma pre-treatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the contact angle decreased and the RMS surface roughness increased significantly. It is believed that the surface energy and adhesive force of the polymer surfaces increased with the $O_2$ plasma treatment and that the crystallinity and grain size of the GZO films increased. When the RF power was 100W and the treatment time was 120 sec in the $O_2$ plasma pretreatment process, the resistivity of the GZO films on the PEN substrate was $1.05\;{\times}\;10^{-3}{\Omega}-cm$, which is an appropriate range for most optoelectronic applications.

Replacement of ITO for efficient organic polymer solar cells (ITO를 대체한 고효율 유기박막 태양전지)

  • Kim, Jae Ryoung;Park, Jin Uk;Lee, Bohyun;Lee, Pyo;Lee, Jong-Cheol;Moon, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.69.1-69.1
    • /
    • 2010
  • We have fabricated organic photovoltaic cells (OPVs) with highly conductive poly 3,4-ethylenedioxythiophene : poly styrenesulfonate (PEDOT:PSS) layer as an anode without using transparent conducting oxide (TCO), which has been modified by adding some organic solvents like sorbitol (So), dimethyl sulfoxide (DMSO), N-methyl-pyrrolidone (NMP), dimethylformamide (DMF), and ethylene glycol (EG). The conductivity of PEDOT:PSS film modified with each additive was enhanced by three orders of magnitude. According to atomic force microscopy (AFM) study, conductivity enhancement might be related to better connections between the conducting PEDOT chains. TCO-free solar cells with modified PEDOT:PSS layer and the active layer composed of poly(3-hexylthiophene) (P3HT) and phenyl [6,6] C61 butyric acid methyl ester (PCBM) exhibited a comparable device performance to indium tin oxide (ITO) based organic solar cells. The power conversion efficiency (PCE) of the organic solar cells incorporating DMSO, So + DMSO and EG modified PEDOT:PSS layer reached 3.51, 3.64 and 3.77%, respectively, under illumination of AM 1.5 (100mW/$cm^2$).

  • PDF

Electrical Properties of Transparent Indium-Tin-Zinc Oxide Semiconductor for Thin-Film Transistors

  • Lee, Gi-Chang;Choe, Jun-Hyeok;Han, Eon-Bin;Kim, Don-Hyeong;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.159-159
    • /
    • 2008
  • 투명전도체 (transparent conducting oxides: TCOs) 는 일반적으로 $10^3\Omega^{-1}Cm^{-1}$의 전도도, 가시광 영역에서 80%이상의 투명성을 가지는 재료로서, 액정 박막 표시 장치(TFT-LCD), 광기전성 소자, 유기 발광 소자, 에너지 절약 창문, 태양전지(sollar cell) 등 전극으로 사용되고 있다. 최근에는 TCO의 전도도특성을 조절하여 반도성특성을 가진 투명 산화물 반도체(transparent oxide semiconductor: TOS) 을 이용한 박막 트랜지스터 연구가 활발히 진행 중이다. 기존의 실리콘을 기반으로 하는 박막 트랜지스터의 낮은 이동도, 불투명성의 특성을 가지고 있지만, 산화물 박막트랜지스터는 높은 이동도를 발현 할 수 있을 뿐만 아니라, 넓은 밴드갭 에너지를 갖는 산화물을 이용하므로 투명한 특성도 발현 할 수 있어 차세대 디스플레이의 구동소자로서 응용연구가 되고 있다. 이에 본 연구에서는 박막트랜지스터 channel layer로서의 Indium-Tin-Zinc oxide 적용특성을 조사하였다. Indium, Tin, Zinc 의 혼합비율을 다양하게 조절하여 타겟을 제작하였다. 이를 RF magnetron sputtering 를 이용하여 박막으로 성장시켰으며, 기판으로는 glass 기판을 사용하였다. 박막 성장시 아르곤과 산소의 비율을 다양하게 조절하였다. 성장시킨 박막은 Hall effect, Transmittance, Work function, XRD등을 이용하여 전기적, 광학적, 구조특성을 평가하였다. Indium-Tin-Zinc Oxide(ITZO) 을 channel layer로 사용하여 Thin-film transistor 을 제작하여, TFT의 I-V 및 stability특성을 평가하였다.

  • PDF

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

Current Status in Light Trapping Technique for Thin Film Silicon Solar Cells (박막태양전지의 광포획 기술 현황)

  • Park, Hyeongsik;Shin, Myunghoon;Ahn, Shihyun;Kim, Sunbo;Bong, Sungjae;Tuan, Anh Le;Hussain, S.Q.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.95-102
    • /
    • 2014
  • Light trapping techniques can change the propagation direction of incident light and keep the light longer in the absorption layers of solar cells to enhance the power conversion efficiency. In thin film silicon (Si) solar cells, the thickness of absorption layer is generally not enough to absorb entire available photons because of short carrier life time, and light induced degradation effect, which can be compensated by the light trapping techniques. These techniques have been adopted as textured transparent conduction oxide (TCO) layers randomly or periodically textured, intermediate reflection layers of tandem and triple junction, and glass substrates etched by various patterning methods. We reviewed the light trapping techniques for thin film Si solar cells and mainly focused on the commercially available techniques applicable to textured TCO on patterned glass substrates. We described the characterization methods representing the light trapping effects, texturing of TCO and showed the results of multi-scale textured TCO on etched glass substrates. These methods can be used tandem and triple thin film Si solar cells to enhance photo-current and power conversion efficiency of long term stability.

Optical properties of the Al:ZnO transparent conducting oxide films prepared by DC/RF (DC/RF 마그네트론 스퍼터링으로 제작한 Al:ZnO 투명전도성 산화막의 광학적 특성)

  • Lee, B.J.;Shin, P.K.;Nam, K.W.;Song, J.H.;Kim, Y.H.;Kim, Y.W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1254-1255
    • /
    • 2008
  • Low cost TCO(Transparent Conductive oxide) thin films were prepared by 6" DC/RF magnetron sputtering systems. For the AZO preparation processes a 99.99% AZO target (Zn: 98 wt.%, $Al_2O_3$: 2 wt.%) was used. In order to verify the optical properties of the AZO thin films, the transparency was tested with sputtering conditions using UV-visible spectroscopy. As a result, we got the transmittance properties over 80% and low resistivity in the sputtering conditions of DC 200[W], Ar 30 [sccm], 1 [mtorr], 20 [min].

  • PDF

Effect of the structural and electrical characteristics of TCO thin films on the performance of OLED devices (TCO 박막의 구조 및 전기적 특성에 따른 OLED 소자의 특성)

  • Lee, Bong-Kun;Lee, Yu-Lim;Lee, Kyu-Mann
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.270-270
    • /
    • 2010
  • OLED device is one of the most attractive and alternative display components, which stems primarily from the self-emission, large intrinsic viewing angle, and fast switching speed. However, because of its relatively short history of development, much remains to be studied in terms of its basic device physics, manufacturing processes, and reliability etc. Especially among several issues, it should be noted that the device characteristics are very sensitive to the surface properties of transparent conducting oxide (TCO) electrode materials. In this study, we have investigated the performance of OLED devices as a function of sheet resistance and surface roughness of TCO thin films. For this purpose, ITO and IZO thin films were deposited by r. f. magnetron sputtering under various ambient gases (Ar, Ar+O2 and Ar+H2, respectively). The crystal structure and surface morphology were examined by using XRD and FESEM. Also, electrical and optical properties were Investigated.

  • PDF

Bulk and Surface of Al2O3 doped ZnO Films at Different Target Angles by DC magnetron sputtering

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.345.2-345.2
    • /
    • 2016
  • Alumina (Al2O3) doped zinc oxide (ZnO) films (AZO) have been prepared from 2 wt.% Al2O3 doped ZnO target by DC magnetron sputtering at a 2 mTorr (0.27 Pa) chamber pressure in (15 sccm) argon ambient. We obtained films of various opto-electronic properties by variation of target angle from 32.5o to 72.5o. At lower target angle deposited films show higher values in optical gap, mobility of charge carrier, carrier concentration, crystallite grain size, transmission range of wavelength, which are favorable characteristics of AZO as a transparent conducting oxide (TCO). At higher target angle the sheet resistance, work function, surface roughness for the AZO films increases. Measured haze ratio of the films changed lower to higher and size of characteristic surface structure of as deposited film ranges from ~40 nm to ~300 nm. By a combination of low and high target angle we obtained a textured TCO film with high conductivity.

  • PDF