• Title/Summary/Keyword: TBM excavation data

Search Result 56, Processing Time 0.021 seconds

Analysis and Assessment of Tunnel Boring Machine Performance in Hard Rock (경암반에서 TBM 굴진 해석 및 평가)

  • 배규진;이용수;홍성완;박홍조
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.144-155
    • /
    • 1994
  • This research is designed to assess current achievement levels for mechanized excavation systems in Korea adn suggest the model predictive of TBM performance using statistical approaches. A test section in the TBM construction sites is selected to measure and analyze TBM performance. The field records including operating data, time allocation into downtime catagories, and machine design are analyzed on a shift basis. There are a total of 240 shifts, with most days operating two shifts per day. Examples of the probability density functions produced from the test section are presented and discussed. Relationships between TBM penetration rate and rock physical properties are investigated and the empirical equations for TBM performance prediction are also assessed with the field data.

  • PDF

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

A Database to Estimate TBM Manufacturing Specifications and Its Statistical Analysis (TBM 제작 사양을 추정하기 위한 데이터베이스의 구축과 통계분석)

  • Chang, Soo-Ho;Park, Byungkwan;Lee, Chulho;Kang, Tae-Ho;Bae, Gyu-Jin;Choi, Soon-Wook
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.271-281
    • /
    • 2017
  • Generally, TBM specifications have been empirically designed by the know-hows of its manufacturers. Since they govern the excavation performance and the cost of TBMs, it is very crucial to reliably determine them in the design stage of TBMs. In this study, a database consisting of TBM data collected from a various kinds of TBM tunnel projects was built to propose the statistical correlations for estimating TBM main specifications. From the statistical analyses, TBM outer diameters are found to have a strong effect on the TBM specifications such as thrust, torque and cutterhead driving power, which are much more important than TBM types and ground conditions.

Manufacturing of an earth pressure balanced shield TBM cutterhead for a subsea discharge tunnel and its field performance analysis (해저 배출관로 건설을 위한 토압식 쉴드TBM 커터헤드의 설계·제작 및 현장 굴진성능의 분석)

  • Bae, Gyu-Jin;Chang, Soo-Ho;Park, Young-Taek;Choi, Soon-Wook;Lee, Gyu-Phil;Kwon, Jun-Yong;Han, Kyoung-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • An earth pressure balanced shield TBM with the diameter of 4.4 m was designed and manufactured for a subsea discharge tunnel excavation. Its cutterhead was designed to be optimized for the strongest rock mass condition in the tunnel alignment, and then the applicability of the refurbished shield TBM was validated for its maximum capacity. Especially, the maximum cutter penetration depth for the strongest rock mass condition should be kept to be below 7 mm/rev in order to satisfy the allowable capacities of the shield TBM. From the analysis of TBM advance data, approximately 95% of field data showed the cutter penetration depth below 7 mm/rev. In addition, it was certified that the acting forces of every disc cutter, TBM thrust and torque during TBM driving were within the allowable capacities of the shield TBM and its disc cutters. When real acting forces of the disc cutters in the field were compared with those predicted by the CSM model, they showed the close relationships with each other even though the predictions by the CSM model were approximately 22~25% higher than field data.

A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms (쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.494-507
    • /
    • 2021
  • With the increasing use of TBM, research has recently been conducted in Korea to analyze TBM data with machine learning techniques to predict the ground in front of TBM, predict the exchange cycle of disk cutters, and predict the advance rate of TBM. In this study, classification prediction of rock characteristics of slurry shield TBM sites was made by combining traditional rock classification techniques and machine learning techniques widely used in various fields with machine data during TBM excavation. The items of rock characteristic classification criteria were set as RQD, uniaxial compression strength, and elastic wave speed, and the rock conditions for each item were classified into three classes: class 0 (good), 1 (normal), and 2 (poor), and machine learning was performed on six class algorithms. As a result, the ensemble model showed good performance, and the LigthtGBM model, which showed excellent results in learning speed as well as learning performance, was found to be optimal in the target site ground. Using the classification model for the three rock characteristics set in this study, it is believed that it will be possible to provide rock conditions for sections where ground information is not provided, which will help during excavation work.

Evaluation of the rock property around TBM tunnels using seismic reflective survey data and TBM driving data

  • Aoki Kenji;Mito Yoshitada;Yamamoto Takuji;Shirasage Suguru
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.288-295
    • /
    • 2003
  • The relationship between the reflection number obtained from seismic reflective survey and the rock strength value obtained from TBM excavation is examined, and the procedure of the conversion from the reflection number to the rock strength value is proposed. Subsequently, geostatistical method is employed to evaluate the rock properties ahead of the tunnel face and around the tunnel with good precision, using both the seismic reflective survey data and the TBM driving data for the purpose of the tunnel driving and enlargement. The applicability of this evaluation method is examined at the actual tunnel site.

  • PDF

A study on the wear and replacement characteristics of the disc cutter through data analysis of the large diameter slurry shield TBM field (대구경 이수식 쉴드TBM 현장의 데이터 분석을 통한 디스크커터의 마모 및 교체 특성 연구)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.57-78
    • /
    • 2022
  • The disc cutter and cutterbit, which are the most important factors to increase the excavation efficiency of TBM, are key factors in the design and construction of the cutter head. The arrangement, spacing, number, size, and material of disc cutters suitable for the ground conditions determine the success or failure of TBM construction. The disc cutter, which is a representative consumable part in TBM construction, can cause enormous disruption to the construction cost as well as the construction cost unless accurate prediction of wear and replacement cycle is accompanied. Therefore, in this study, the method of calculating the replacement cycle of the disc cutter calculated at the time of design for the slurry shield TBM field, and the depth of wear and replacement location of the disc cutter that occurred during actual construction were compared by analyzing the field data. For a quantitative comparison, weathered soil/weathered rock, soft rock, and hard rock were classified according to the ground in the section showing constant excavation data, and the trajectory of circle was different depending on the location of the disc cutter, so it was compared and analyzed.

Suggestion of empirical formula between FPI and specific energy through analysis of subsea tunnel excavation data (해저 터널 굴진자료 분석을 통한 FPI와 비에너지의 경험식 제시)

  • Kim, Kyoung-Yul;Bae, Du-San;Jo, Seon-Ah;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.687-699
    • /
    • 2018
  • The construction of subsea tunnel differs from that of inland tunnel because of high water pressure due to sea water level and difficulties to reinforce the ground under construction. Therefore, it is very important to prevent trouble in advance when the subsea tunnel is constructed. In this paper, we established lots of databases about characteristics of geological and mechanical parameters on the construction of subsea tunnel using micro slurry TBM which depth is about 60 m. The correlation analysis is conducted to confirm the effect of thrust, torque and RPM among the excavation database on the net penetration rate. Also, An empirical formula is suggested to predict the net penetration rate through the correlation analysis between FPI (Field Penetration Index) and specific energy from the subsea tunnel excavation database.

Development and Performance Evaluation of Real-Time Wear Measurement System of TBM Disc Cutter (TBM 디스크 커터 실시간 마모계측 시스템 개발 및 성능검증)

  • Min-Seok Ju;Min-Sung Park;Jung-Joo Kim;Seung Woo Song;Seung Chul Do;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.154-168
    • /
    • 2024
  • The Tunnel Boring Machine (TBM) disc cutter is subjected to wear and damage during the rock excavation process, and the worn disc cutter should be replaced on time. The manual inspection by workers is generally required to determine the disc cutter replacement. In this case, the workers are exposed to dangerous environments, and the measurements are sometimes inaccurate. In this study, we developed a technology that measures the disc cutter wear in real time. From a series of laboratory tests, a magnetic sensor was selected as the wear sensor, and the real-time disc cutter measurement system was developed integrating wireless communication modules, power supply and data processing board. In addition, the measurement system was verified in actual TBM excavation circumstances. As a result, it was confirmed that the accuracy and stability of the system.

Analysis on Downtime element of Gripper TBM based on field data (현장 데이터 분석을 통한 Gripper TBM의 Downtime 요소 분석)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.393-402
    • /
    • 2021
  • The first TBM introduced in Korea was the gripper TBM, which was applied to the Gudeok Waterway Tunnel in 1985. In the initial stage of the introduction of the gripper TBM, many applications were mainly focused on waterway tunnels (Tunnel Mechanized Construction Design, 2008). Currently, the construction range of gripper TBM in Korea is widely applied to not only waterway tunnels, but also subways, railway tunnels, and TBM+NATM expansion. Overseas, gripper TBM is generally applied, and even when NATM tunnel is applied, it is applied as an exploration tunnel because of the excellent advance rate of gripper TBM and used as an evacuation tunnel after completion. Due to the fast excavation speed, the application of the gripper TBM in the rock section of weathered rock or higher can minimize the environmental and civil complaints caused by creating a large number of work areas when planning long tunnels or mountain tunnels. In this study, the work process of the general gripper TBM was analyzed by analyzing the construction cycle and the gripper TBM with a diameter of 2.6~5.0 m, which was applied the most in Korea. Downtime was investigated and analyzed.