• Title/Summary/Keyword: TBM efficiency

Search Result 47, Processing Time 0.018 seconds

Performance comparison of machine learning classification methods for decision of disc cutter replacement of shield TBM (쉴드 TBM 디스크 커터 교체 유무 판단을 위한 머신러닝 분류기법 성능 비교)

  • Kim, Yunhee;Hong, Jiyeon;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.575-589
    • /
    • 2020
  • In recent years, Shield TBM construction has been continuously increasing in domestic tunnels. The main excavation tool in the shield TBM construction is a disc cutter which naturally wears during the excavation process and significantly degrades the excavation efficiency. Therefore, it is important to know the appropriate time of the disc cutter replacement. In this study, it is proposed a predictive model that can determine yes/no of disc cutter replacement using machine learning algorithm. To do this, the shield TBM machine data which is highly correlated to the disc cutter wears and the disc cutter replacement from the shield TBM field which is already constructed are used as the input data in the model. Also, the algorithms used in the study were the support vector machine, k-nearest neighbor algorithm, and decision tree algorithm are all classification methods used in machine learning. In order to construct an optimal predictive model and to evaluate the performance of the model, the classification performance evaluation index was compared and analyzed.

Computing machinery techniques for performance prediction of TBM using rock geomechanical data in sedimentary and volcanic formations

  • Hanan Samadi;Arsalan Mahmoodzadeh;Shtwai Alsubai;Abdullah Alqahtani;Abed Alanazi;Ahmed Babeker Elhag
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.223-241
    • /
    • 2024
  • Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.

Study on Risk Priority for TBM Tunnel Collapse based on Bayes Theorem through Case Study (사례분석을 통한 베이즈 정리 기반 TBM 터널 붕괴 리스크 우선순위 도출 연구)

  • Kwon, Kibeom;Kang, Minkyu;Hwang, Byeonghyun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.785-791
    • /
    • 2023
  • Risk management is essential for preventing accidents arising from uncertainties in TBM tunnel projects, especially concerning managing the risk of TBM tunnel collapse, which can cause extensive damage from the tunnel face to the ground surface. In addition, prioritizing risks is necessary to allocate resources efficiently within time and cost constraints. Therefore, this study aimed to establish a TBM risk database through case studies of TBM accidents and determine a risk priority for TBM tunnel collapse using the Bayes theorem. The database consisted of 87 cases, dealing with three accidents and five geological sources. Applying the Bayes theorem to the database, it was found that fault zones and weak ground significantly increased the probability of tunnel collapse, while the other sources showed low correlations with collapse. Therefore, the risk priority for TBM tunnel collapse, considering geological sources, is as follows: 1) Fault zone, 2) Weak ground, 3) Mixed ground, 4) High in-situ stress, and 5) Expansive ground. In practice, the derived risk priority can serve as a valuable reference for risk management, enhancing the safety and efficiency of TBM construction. It provides guidance for developing appropriate countermeasure plans and allocating resources effectively to mitigate the risk of TBM tunnel collapse.

Effect of Materials and Construction Conditions on Shotcrete Quality (숏콘크리트 품질에 미치는 재료 및 시공 조건의 영향)

  • 현석훈;한기석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.227-232
    • /
    • 1994
  • Recently, TBM (Tunnel Boring Machince) method for a tunnel construction in domestic is very promisible due to shorten a constrution period. It is very important to increase the efficiency of the shotcrete for the TBM. The major factors influencing the efficienty of shotcrete are materials, mix disign, constrution conditions and skill of nozzle-man. In this paper, first, optimum synthesize conditions for the shotcrete accelerators was explored and early stiffenting mechanisms also studied. Second, TBM method was applied for a real job site using the optimum conditions obtained from a lab scale experiment.

  • PDF

A basic study on the mixing bar interaction efficiency in shield TBM chamber (Shield TBM 챔버 내 mixing bar 교반 효율에 대한 기본연구)

  • Hwang, Beoung-Hyeon;Kim, Sang-Hwan;Lee, Kyung-Heon;An, Jun-Kyu;Cho, Sung-Woo;Kim, Yeon-Deok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • This study is the basic study for improving the range of influence and potency of mixing bars in the chamber of Shield TBM. Currently, there are many studies on disk cutters, cutter bits and segments in the study of the domestic Shield TBM. However, studies that mix soil and rocks that come from the membrane during the Shield TBM excavation and scatter them with screw conveyors are not as good as those abroad. In this study, the existing Shield TBM Chamber was manufactured as a miniature and the experiment. Inside the chamber, different sizes (4 mm, 6 mm, 8 mm, 10 mm) and colors (black, white, red, and blue) were used to form layers. This experiment was carried out by different shapes and sizes of RPM and mixing bars. In addition, the difference between a miniature model and a reclining one was checked to determine the effect of the direction of gravity on the mixing efficiency. This was done in the same way for all other conditions other than differences in the direction of gravity. Through this experiment, we identified the orientation of the chamber model, the size and shape of the mixing bar inside, and the mixing effect and torque depending on RPM. A comparative review of the mixing effect and torque confirmed that the shape and size of the mixing bar affect the mixing of samples, and that the direction of gravity affects torque.

Improvement Plan of Excavation Performance Based on Shield TBM Performance Prediction Models and Field Data (쉴드 TBM 성능예측모델과 굴진자료 분석을 통한 굴진성능 개선방안)

  • Jung, Hyuksang;Kang, Hyoungnam;Choi, Jungmyung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.43-52
    • /
    • 2010
  • Shield method is the tunnel boring method that propels a steel cylinder in the ground and excavates tunnels at once. After Marc Isambard Brunel started using the method for the Thames Riverbed Tunnel excavation in London, many kinds of TBM (Tunnel Boring Machine) developed and applied for the construction of road, railway, electricity channel, pipeline, etc. In comparison with NATM concept that allows to observe ground condition and copes with difficulty. The machine selected before starting construction is not able to be changed during construction in shield TBM. Therefore the machine should be designed based on the ground survey result and experiment, so that the tunnel might be excavated effectively by controlling penetration speed, excavation depth and cutter head speed according to the ground condition change. This research was conducted to estimate penetration depth, excavate speed, wear of disc cutter on Boondang Railway of the Han Riverbed Tunnel ground condition by TBM performance prediction models such as NTNU, $Q_{TBM}$, Total Hardness, KICT-SNU and compare the estimated value with the field data. The estimation method is also used to analyze the reason of poor excavation efficiency at south bound tunnel.

Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques

  • Kim, Yunhee;Hong, Jiyeon;Shin, Jaewoo;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.249-258
    • /
    • 2022
  • A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.

Waterproofing performance evaluation according to the number of layer for shield TBM segment hydrophilic rubber waterstop (쉴드 TBM 세그먼트 지수재의 배열수 변화에 따른 방수성능 평가)

  • Ham, Soo-Kwon;Jung, Hoon;Kim, Beom-Ju;Jeong, Kyeong-han;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 2020
  • The interest in the use of shield TBM (Tunnel Boring Machine) on the tunnel excavation has been increased rapidly in Korea. The shield TBM tunnel is generally designed as non-drainage tunnel. Consequently, if water leakage through the segment joints happens, big problems on the usage and stability of tunnel can be occurred. In this study, the variation of waterproof capacity of hydrophilic rubber waterstop by the construction error and excessive displacement of segment was studied. In particular, the waterproof capacity of each of single and double layer arrangements of hydrophilic rubber waterstop was examined to verify the efficiency of the double layer arrangement. The test results show that the single layer and double layer hydrophilic rubber waterstop showed the same waterproof performance. hydrophilic rubber waterstop has favorable on the offset, however unfavorable on the gap.

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part I : Modeling (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part I : 모델링)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.484-495
    • /
    • 2020
  • To numerically simulate the advance of EPB TBM, various type of numerical analysis methods have been adopted including discrete element method (DEM), finite element method (FEM), and finite difference method (FDM). In this paper, an EPB TBM driving model was proposed by using coupled DEM-FDM. In the numerical model, DEM was applied in the TBM excavation area, and contact properties of particles were calibrated by a series of triaxial tests. Since the ground around the excavation area was coupled with FDM, the horizontal stress considering the coefficient of earth pressure at rest could be applied. Also, the number of required particles was reduced and the efficiency of the analysis was increased. The proposed model can control the advance rate and rotational speed of the cutter head and screw conveyor, and derive the torque, thrust force, chamber pressure, and discharging during TBM tunnelling.