• Title/Summary/Keyword: TBM Specification

Search Result 10, Processing Time 0.215 seconds

A manual for the revised TBM tunnel specification (개정 TBM 터널 표준시방서 해설 연구)

  • Sagong, Myung;Jung, Chi Kwang;Moon, Joon Bai;Kim, Jeayoung;Yun, Do Sik;Yu, Myeong Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.415-428
    • /
    • 2015
  • With increase of the extension of long tunnels and urban tunnelling, demands on the new tunnelling technologies are raised. Currently, drilling and blasting tunnel construction method is mostly used, however, because of sever blast vibration for some occasions, complaints from local residents and rock damages are inevitable. Accordingly, TBM tunnelling is more efficient and effective for such conditions. Nevertheless, tunnel construction costs of TBM cannot compete that of the drill and blasting method in Korea. To overcome such limitations, various TBM equipments and construction technologies are required. In addition, continuous revision of the design standard and specification are required. In this study, a detailed explanation regarding the revised version of TBM section in the tunnel standard specification at 2015 is shown.

The suggestion of tunneling information and detail requirements for EPB shield machine design (토압식 쉴드TBM 장비설계를 위한 설계항목과 세부 요구사양의 구성에 관한 제안)

  • Kim, Ki-Hwan;Kim, Hyouk;Kim, Seong-Cheol;Kang, Si-On;Mun, Cheol-Hwa
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.611-622
    • /
    • 2020
  • Recently, tunneling projects using shield TBM are increasing in Korea, but the information of client for machine design and manufacturing considering the characteristics of the tunneling phase is not formal, and it is difficult to optimized machine for suitable tunneling works. This paper suggest as for reference the required terms that can be used in Korea on the design items and detailed requirements for ordering of EPB shield TBM based on overseas case study. It would be hope that the TBM user can request the overall tunneling plan and required machine specification when ordering TBM, and the TBM supplier can design and manufacturing that is clear condition and suitable machine for the successful project, so that there are no residential civil complaints and for safe tunneling as well, shield TBM tunneling method will be activated.

A Database to Estimate TBM Manufacturing Specifications and Its Statistical Analysis (TBM 제작 사양을 추정하기 위한 데이터베이스의 구축과 통계분석)

  • Chang, Soo-Ho;Park, Byungkwan;Lee, Chulho;Kang, Tae-Ho;Bae, Gyu-Jin;Choi, Soon-Wook
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.271-281
    • /
    • 2017
  • Generally, TBM specifications have been empirically designed by the know-hows of its manufacturers. Since they govern the excavation performance and the cost of TBMs, it is very crucial to reliably determine them in the design stage of TBMs. In this study, a database consisting of TBM data collected from a various kinds of TBM tunnel projects was built to propose the statistical correlations for estimating TBM main specifications. From the statistical analyses, TBM outer diameters are found to have a strong effect on the TBM specifications such as thrust, torque and cutterhead driving power, which are much more important than TBM types and ground conditions.

Domestic and Overseas TBM Production Specification and Professional Training Program (국내외 TBM 제작 사양 및 전문인력 양성 프로그램 분석)

  • Kim, Ki-Hwan;Kim, Seong-Cheol;Kang, Si-On;Mun, Cheol-Hwa;Jeong, Yun-Young;Kim, Hyouk
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.281-291
    • /
    • 2019
  • In Overseas case, most tunnels in under are or through the river are constructed with shield TBM and the manufacturer orders of related equipment suitable for the project are mode. Accordingly, the client provides the specifications required for the equipment manufacture. In addition, TBM equipment has been operated by those who have completed the expert training program, which for minimizing the risk of equipment operation in construction field corresponding to the mechanized construction. However, in Korea, such a system related to above the program and specifications has not yet been built, which is causing a lot of difficulties in construction field. Therefore, this study investigated the differences in bidding guides provided by mechanized construction in domestic and abroad, and the professional education programs for expert training being conducted from overseas. Futhermore, we will propose the guidelines of essential equipment specification contained in domestic bidding and provide the necessary manual for the professional education program for TBM as the mechanized construction method.

Case study for technical evaluation and check list to decision of optimized TBM (최적 TBM 장비 발주를 위한 선정 기준 및 체크리스트 사례 검토)

  • Kim, Ki-Hwan;Kim, Hyouk;Kim, Seong-Cheol;Kang, Si-On
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.385-392
    • /
    • 2021
  • When ordering a slurry shield TBM to be used for power cable tunneling, the client organizes an evaluation committee composed of experts, suggest the criteria and evaluation method for technical specifications for supplier selection, and based on the manufacturer's technical proposal were attempted to evaluate and select. It is expected to be referred to as a guideline for future projects to using Shield TBM as one of the methods of verifying performance and quality in advance and securing economic feasibility in the shield TBM tunneling in the recent increasing trend.

Development and Application of the Assessment System of TBM Tunnelling Procedure (TBM 터널 공정 분석시스템의 개발 및 적용)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.455-464
    • /
    • 2003
  • Four assessment systems for planning and evaluation of TBM tunnelling are discussed, and their characteristics and input data are analyzed. Two of the systems are determined to be adequate for post-evaluation of TBM performance because the time, such as repair time, downtime, installation time and transport time, must be included for calculations. The others are adequate for pre-planning because the basic data of the systems consist of only the basic properties of rocks and rock masses, and the specification of TBM. In order to apply these assessment systems, a number of equations, graphs and charts are generally required, which seems to be very inconvenient and complicated. In this study, therefore, a user-friendly program operated on Windows system is developed, and each system can be selected by the corresponding input data. It will be possible fer tunnel engineers to select a system according to their objectives and available input data, and to apply the system to TBM tunnel project.

Database Analysis for Estimating Design Parameters of Medium to Large-Diameter TBM (중대단면 TBM 설계 사양 예측을 위한 DB분석)

  • Choi, Soon-Wook;Park, Byungkwan;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.513-527
    • /
    • 2018
  • The Tunnel Boring Machine(TBM) is relatively insufficient to cope with unpredicted changes in ground conditions as compared with Conventional Tunnelling Methods. Therefore, it is very important to predict the TBM performance at the design stage and estimate the advance rate for the calculation of the construction period. In this study, we added data to 211 TBM databases constructed in the previous study and analyzed the correlation between TBM outer diameter, maximum thrust, maximum cutterhead torque, cutterhead driving power and RPM, which are the main design and manufacturing specifications of TBM. As a result of the analysis from results obtained in the previous studies, it was confirmed that TBM outer diameter is very effective and important in estimating maximum thrust, maximum cutterhead torque, and cutterhead driving power of the TBM. As a result of comparing the regression equations derived from other TBM databases outside the country and the regression equation obtained from the present study results, the maximum thrust showed a similar tendency to each other, but the maximum torque estimated from the regression equation of this study was higher than that of other countries in the case of the large scale TBM.

Numerical Study of Face Plate-Type EPB Shield TBM by Discrete Element Method (개별요소법을 활용한 면판형 토압식 쉴드TBM의 수치해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Choi, Soon-Wook;Park, Byungkwan;Kang, Tae-Ho;Sim, Jung Kil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.163-176
    • /
    • 2017
  • The Discrete Element Method (DEM) has been widely used in civil engineering as well as various industrial fields to simulate granular materials. In this study, DEM was adopted to predict the performance of the face plate-type earth pressure balance (EPB) shield TBM (Tunnel Boring Machine). An analysis of the TBM excavation performance was conducted according to two pre-defined excavation conditions with the different rotation speeds per minute (RPM) of the cutterhead. The TBM model which was used in this study has a 6.64 m of diameter and six spokes. Also, 37 precutters and 98 scrapers at an each spoke were modeled with a real-scale specification. From the analysis, compressive forces at the cutterhead face, shield and cutting tools, resistant torques at the cutterhead face, muck discharge rate and accumulated muck discharge by the screw auger were measured and compared.

Study on selection and basic specifications design of shield TBM for power cable tunnels (터널식 전력구 쉴드TBM 선정 및 기본설계 사양 제시에 관한 연구)

  • Jung Joo Kim;Ji Yun Lee;Hee Hwan Ryu;Ju Hwan Jung;Suk Jae Lee;Du San Bae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2023
  • Power cable tunnels is one of the underground structures meant for electricity transmission and are constructed using shield TBM method when transitting across urban and subsea regions. With the increasing shaft depth for tunnels excavation when the shield TBM excavated the rock mass, the review of selecting closed-type shield TBM in rocks becomes necessary. A simplified shield TBM design method is also necessary based on conventional geotechnical survey results. In this respect, design method and related design program are developed based on combined results of full-scale tests, considerable amount of accumulated TBM data, and numerical simulation results. In order to validate the program results, excavation data of a completed power cable tunnel project are utilized. Thrust force, torque, and power of shield TBM specification are validated using Kernel density concept which estimates the population data. The robustness of design expertise is established through this research which will help in stable provision of electricity supply.

An evaluation of influence factors based on the limit state design-AASHTO LRFD for structural analysis of shield tunnel segment lining (한계상태설계법-AASHTO LRFD를 적용한 쉴드터널 세그먼트 라이닝의 구조해석 영향인자 평가)

  • Kim, Yang-Woon;Kim, Hong-Moon;Kim, Hyun-Su;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.99-118
    • /
    • 2018
  • Recently, the limit state design method in the design of the structure is in global trend, but it is limited to a few structures in Korea. Since the introduction of the limit state design method has recently been attempted for tunnels, which are the main underground structures, it is surely necessary to understand the latest limit state design method. Therefore, based on the recently published AASHTO LRFD Road Tunnel Design and Construction Guide Specification (2017), structural load factors and load combinations were reviewed, and various factors which should be applied for the review of structures have been analyzed. In this study, utility tunnel section and subway tunnel sections used in Korea were analyzed by the limit state design method, and we have analyzed the direction of application of limit state design method through studying the tendency of member force by various influential factors such as ground conditions, load modifier and joint stiffness.