• Title/Summary/Keyword: TBATS 모형

Search Result 5, Processing Time 0.02 seconds

Evaluation of weather information for electricity demand forecasting (전력수요예측을 위한 기상정보 활용성평가)

  • Shin, YiRe;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1601-1607
    • /
    • 2016
  • Recently, weather information has been increasingly used in various area. This study presents the necessity of hourly weather information for electricity demand forecasting through correlation analysis and multivariate regression model. Hourly weather data were collected by Meteorological Administration. Using electricity demand data, we considered TBATS exponential smoothing model with a sliding window method in order to forecast electricity demand. In this paper, we have shown that the incorporation of weather infromation into electrocity demand models can significantly enhance a forecasting capability.

Electricity forecasting model using specific time zone (특정 시간대 전력수요예측 시계열모형)

  • Shin, YiRe;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.275-284
    • /
    • 2016
  • Accurate electricity demand forecasts is essential in reducing energy spend and preventing imbalance of the power supply. In forcasting electricity demand, we considered double seasonal Holt-Winters model and TBATS model with sliding window. We selected a specific time zone as the reference line of daily electric demand because it is least likely to be influenced by external factors. The forecasting performance have been evaluated in terms of RMSE and MAPE criteria. We used the observations ranging January 4, 2009 to December 31 for testing data. For validation data, the records has been used between January 1, 2012 and December 29, 2012.

A study on electricity demand forecasting based on time series clustering in smart grid (스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구)

  • Sohn, Hueng-Goo;Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.193-203
    • /
    • 2016
  • This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).

Time series clustering for AMI data in household smart grid (스마트그리드 환경하의 가정용 AMI 자료를 위한 시계열 군집분석 연구)

  • Lee, Jin-Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.791-804
    • /
    • 2020
  • Residential electricity consumption can be predicted more accurately by utilizing the realtime household electricity consumption reference that can be collected by the AMI as the ICT developed under the smart grid circumstance. This paper studied the model that predicts residential power load using the ARIMA, TBATS, NNAR model based on the data of hour unit amount of household electricity consumption, and unlike forecasting the consumption of the whole households at once, it computed the anticipated amount of the electricity consumption by aggregating the predictive value of each established model of cluster that was collected by the households which show the similiar load profile. Especially, as the typical time series data, the electricity consumption data chose the clustering analysis method that is appropriate to the time series data. Therefore, Dynamic Time Warping and Periodogram based method is used in this paper. By the result, forecasting the residential elecrtricity consumption by clustering the similiar household showed better performance than forecasting at once and in summertime, NNAR model performed best, and in wintertime, it was TBATS model. Lastly, clustering method showed most improvements in forecasting capability when the DTW method that was manifested the difference between the patterns of each cluster was used.

Forecasting daily peak load by time series model with temperature and special days effect (기온과 특수일 효과를 고려하여 시계열 모형을 활용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jin Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.161-171
    • /
    • 2019
  • Varied methods have been researched continuously because the past as the daily maximum electricity demand expectation has been a crucial task in the nation's electrical supply and demand. Forecasting the daily peak electricity demand accurately can prepare the daily operating program about the generating unit, and contribute the reduction of the consumption of the unnecessary energy source through efficient operating facilities. This method also has the advantage that can prepare anticipatively in the reserve margin reduced problem due to the power consumption superabundant by heating and air conditioning that can estimate the daily peak load. This paper researched a model that can forecast the next day's daily peak load when considering the influence of temperature and weekday, weekend, and holidays in the Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, and NNETAR model. The results of the forecasting performance test on the model of this paper for a Seasonal Reg-ARIMA model and NNETAR model that can consider the day of the week, and temperature showed better forecasting performance than a model that cannot consider these factors. The forecasting performance of the NNETAR model that utilized the artificial neural network was most outstanding.