• Title/Summary/Keyword: TAS module

Search Result 5, Processing Time 0.018 seconds

Preliminary study of Angle sensor module for Vehicle Steering System Based on Multi-track Encoder (자동차 조향장치용 TAS module을 위한 Multi-track Encoder기반 신호처리보드의 구현)

  • Woo, Seong Tak;Han, Chun Soo;Baek, Jun Byung;Lee, Sang-hoon;Jung, Min Woo;Choo, Sung Joong;Park, Jae Roul;Yoo, Jong-Ho;Jung, Sanghun;Kim, Ju Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.432-437
    • /
    • 2017
  • As 4.0 industry has been developed, research on a self-driving car technology and related parts of an automobile has been highly investigated recently. Particularly, a TAS(Torque Angle Sensor) module on steering wheel system has been considered as a key technology because of its precise angle, torque detection and high speed signal processing. The environmental assessment is generally required on the TAS module to examine high resolution of angle/torque detection. In the case of existing TAS module, angle detection errors has been occurred by back-lash on main and sub gear in addition to complicated structure caused by gears. In this paper, a structure of the TAS module, which minimizes the numbers of components and angle detection errors on the module compared with the existing TAS module, for vehicle steering system based on a Multi-track Encoder has been proposed. Also, angle detection signal processing board, and key technology of the TAS module were fabricated and evaluated. As a result of the experiments, we confirmed an excellent performance of the fabricated signal processing board for angle detection and an applicability of the fabricated angle detection board on the TAS module of vehicles by the environmental assessment an automobile standard.

Tas13D Inhibits Growth of SMMC-7721 Cell via Suppression VEGF and EGF Expression

  • He, Huai-Zhen;Wang, Nan;Zhang, Jie;Zheng, Lei;Zhang, Yan-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2009-2014
    • /
    • 2012
  • Objective: Taspine, isolated from Radix et Rhizoma Leonticis has demosntrated potential proctiective effects against cancer. Tas13D, a novel taspine derivative synthetized by structure-based drug design, have been shown to possess interesting biological and pharmacological activities. The current study was designed to evaluate its antiproliferative activity and underlying mechanisms. Methods: Antiproliferative activity of tas13D was evaluated by xenograft in athymic mice in vivo, and by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and cell migration assays with human liver cancer (SMMC-7721) cell lines in vitro. Docking between tas13D and VEGFR and EGFR was studied by with a Sybyl/Surflex module. VEGF and EGF and their receptor expression was determined by ELISA and real-time PCR methods, respectively. Results: Our present study showed that tas13D inhibited SMMC-7721 xenograft tumor growth, bound tightly with the active site of kinase domains of EGFR and VEGFR, and reduced SMMC-7721 cell proliferation (IC=34.7 ${\mu}mol/L$) and migration compared to negative controls. VEGF and EGF mRNAs were significantly reduced by tas13D treatment in a dose-dependent manner, along with VEGF and EGF production. Conclusion: The obtained results suggest that tas13D inhibits tumor growth and cell proliferation by inhibiting cell migration, downregulating mRNA expression of VEGF and EGF, and decreasing angiogenic factor production. Tas13D deserves further consideration as a chemotherapeutic agent.

Fabrication of the Optical Fiber-Photodiode Array Module Using Si v-groove (실리콘 v-groove를 이용한 광섬유-광검출기 어레이 모듈 제작)

  • 정종민;지윤규;박찬용;유지범;박경현;김홍만
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.88-97
    • /
    • 1994
  • We describe the design, fabrication, and performance of the optical fiber-photodiode 1$\times$12 arry module using mesa-type InS10.53T GaS10.47TAS/INP 1$\times$12 PIN photodiode array. We fabricated the PIN PD array for high-speed optical fiber parallel data link optimizing quantum efficiency, operating speed sensitivity from the PIN-FET structure, and electrical AC crosstalk. For each element of the array, the diameter of the photodetective area is 80 $\mu$m, the diameter of the p-metal pad is 90 $\mu$m, and the photodiode seperation is 250 $\mu$m to use Si v-groove. Ground conductor line is placed around diodes and p-metal pads are formed in zigzag to reduce Ac capacitance coupling between array elements. The dark current (IS1dT) is I nA and the capacitance(CS1pDT) is 0.9 pF at -5 V. No signifcant variations of IS1dT and CPD from element to element in the array were observed. We calulated the coupling efficiency for 10/125 SMF and 50/125 GI MMF, and measured the responsivity of the PD array at the wavelength is 1.55 $\mu$ m. Responsivities are 0.93 A/W for SMF and 0.96 A/W for MMF. The optical fiber-PD array module is useful in numerous high speed digital and analog photonic system applications.

  • PDF

Faultproof Design in Space for Monopropellant Rocket Engine Assembly (단일추진제 로켓 엔진 어셈블리를 위한 우주 공간에서의 과실 방지 설계)

  • Han, Cho-Young;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1377-1384
    • /
    • 2003
  • An analysis has been performed for active thermal control of the KOMPSAT monopropellant rocket engine assembly, i.e., dual thruster module(DTM). The main efforts of this work have been directed at determining proper heater sizes for propellant valves and catalyst beds necessary to maintain their temperatures within specified temperature ranges under KOMPSAT environment and operational conditions. The TAS incorporated with TRASYS thermal radiation analyzer was used to establish a complete heat transfer model which allows to predict the DTM temperature as a function of time. The thermal analysis has been performed in transient mode to verify the appropriate power for catalyst bed heaters necessary to increase catalyst bed temperature to the required value within a specified period of time. Similar analysis has been executed to validate the heater power for the thermostatically controlled primary and redundant heater circuits used to prevent hydrazine freezing, i.e., single fault. Moreover the effect of the radiative property of thermal control coating of heat shield was examined. Thruster firing condition was also simulated for the heat soakback condition. As a consequence, all thermal analysis results for DTM satisfactorily met the thermal requirements for the KOMPSAT DTM under the worst case average voltage, i.e. 25 volt.

Electrical and Fluidic Characterization of Microelectrofluidic Bench Fabricated Using UV-curable Polymer (UV경화성 폴리머를 이용한 미소유체 통합접속 벤치 개발 및 전기/유체적 특성평가)

  • Youn, Se-Chan;Jin, Young-Hyun;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.475-479
    • /
    • 2012
  • We present a novel polymer fabrication process involving direct UV patterning of a hyperbranched polymer, AEO3000. Compared to PDMS, which is the most widely used polymer in bioMEMS devices, the present polymer has advantages with regard to electrode integration and fast fabrication. We designed a four-chip microelectrofluidic bench having three electrical pads and two fluidic I/O ports. We integrated a microfluidic mixer and a cell separator on the bench to characterize the interconnection performance and sample manipulation. Electrical and fluidic characterization of the microfluidic bench was performed. The measured electrical contact resistance was $0.75{\pm}0.44{\Omega}$, which is small enough for electrical applications, and the pressure drop was 8.3 kPa, which was 39.3% of the value in the tubing method. By performing yeast mixing and a separation test in the integrated module on the bench, we successfully showed that the interconnected chips could be used for bio-sample manipulation.