• Title/Summary/Keyword: TAKE-OFF

Search Result 913, Processing Time 0.031 seconds

Development of Flight Control System and Troubleshooting on Flight Test of a Tilt-Rotor Unmanned Aerial Vehicle

  • Kang, Youngshin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.120-131
    • /
    • 2016
  • The full results of troubleshooting process related to the flight control system of a tilt-rotor type UAV in the flight tests are described. Flight tests were conducted in helicopter, conversion, and airplane modes. The vehicle was flown using automatic functions, which include speed-hold, altitude-hold, heading-hold, guidance modes, as well as automatic take-off and landing. Many unexpected problems occurred during the envelope expansion tests which were mostly under those automatic functions. The anomalies in helicopter mode include vortex ring state (VRS), long delay in the automatic take-off, and the initial overshoot in the automatic landing. In contrast, the anomalies in conversion mode are untrimmed AOS oscillation and the calibration errors of the air data sensors. The problems of low damping in rotor speed and roll rate responses are found in airplane mode. Once all of the known problems had been solved, the vehicle in airplane mode gradually reached the maximum design speed of 440km/h at the operation altitude of 3km. This paper also presents a comprehensive detailing of the control systems of the tilt-rotor unmanned air vehicle (UAV).

Kinematic Analysis of the Hurdle Clearance Technique used by World Top Class Women's Hurdler (세계 정상급 여자 허들 선수들이 사용하는 허들 넘는 기술의 운동학적 분석)

  • Ryu, Jae-Kyun;Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.131-140
    • /
    • 2011
  • The purpose of this study was to evaluate the kinematic characteristics of 5th hurdle clearance during the 100m hurdle final competition at the 2010 Colorful DaeGu pre-championship meeting. This study was also intended to provide the technical data for better performance for preparing the 2011 world championship. Lee and Jung need to change technical movement by reducing the distance of the take-off point from the hurdle and by decreasing the vertical velocity of the C.G.(center of gravity) at the takeoff. Powell's angle of the take-off leg showed bigger at the touchdown and smaller at the takeoff comparing to Lee's and Jung's. Furthermore, Powell's horizontal velocity of the C.G. was maintained at the takeoff and touchdown. So, Lee and Jung need to change angle of the take-off leg the same as Powell's. Both Lee and Jung need to increase the angle of landing leg at the touchdown. In addition to increasing the angle Jung needs to improve the knee and ankle velocity with the hurdling leg.

Commentary Study on Automatic Speedbrake Control System of B747-8 (B747-8 Automatic Speedbrake Control System에 대한 해석적 연구)

  • Moon, Bong Sup;Nam, MyongKwan;Choi, Youn Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.40-47
    • /
    • 2018
  • Reducing aircraft speed is the important task in the Rejected Takeoff and/or landing process. It is known that the effect of the Speedbrake is most important factor during the rejected takeoff maneuver in particular near V1 on the critical field length runway. The B747 designer created Automatic Speedbrake Control System to relieve pilot workload, improves brake operation and ensures proper Speedbrake operation for rejected take off. However, those who make the Rejected Takeoff procedure ignored the Automatic function and made it does all manual operations. This lets procedures difficult, complicated, and a cause of confusion and pilot error. This study was conducted to commentary the mechanism and function of the Automatic Speedbrake Control System of B747-8 and to propose appropriate B747-8 Rejected Take off procedures for its function to reduce the workload of pilots and contribute to reduce the possibility of pilot error during Rejected Takeoff.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.

Open BIM-based quantity take-off system for schematic estimation of building frame in early design stage

  • Choi, Jungsik;Kim, Hansaem;Kim, Inhan
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • Since construction projects are large and complex, it is especially important to provide concurrent construction process to BIM models with construction automation. In particular, the schematic Quantity Take-Off (QTO) estimation on the BIM models is a strategy, which can be used to assist decision making in just minutes, because 70-80% of construction costs are determined by designers' decisions in the early design stage. This paper suggests a QTO process and a QTO prototype system within the building frame of Open BIM to improve the low reliability of estimation in the early design stage. The research consists of the following four steps: (1) analyzing Level of Detail (LOD) at the early design stage to apply to the QTO process and system, (2) BIM modeling for Open BIM based QTO, (3) checking the quality of the BIM model based on the checklist for applying to QTO and improving constructability, and (4) developing and verifying a QTO prototype system. The proposed QTO system is useful for improving the reliability of schematic estimation through decreasing risk factors and shortening time required.

Experimental Investigation on Onset Criteria of Liquid/Gas Entrainment in the Header-Feeder System of CANDU

  • Lee Jae-Young;Hwang Gi-Suk;Kim Man-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1030-1042
    • /
    • 2006
  • An experimental study has been performed to investigate the off-take phenomena at the header-feeder systems (horizontal header pipe with multiple feeder branch pipes) in a CANDU (CANadian Deuterium Uranium) reactor with the branch orientation varies ${\pm}36^{\circ}\;or\;{\pm}72^{\circ}$. In order to evaluate the applicability of the conventional correlations used in the safety analysis code, RELAP5-Mod3, the test facility is designed with the 1/2 scale of the. CANDU 6. It was found that the data set for the top, bottom and side branches are in a good agreement with the correlations used. However, for the specific angled branches, ${\pm}36^{\circ}\;and\;{\pm}72^{\circ}$, the onsets of off-take data and quality data showed large deviation with the conventional model inside RELAP5-MOD3. Furthermore, based on the uncertainty analysis, the conventional 2.5 power law needs to be modified. The present experimental data set can be useful for the construction of the general correlation considering the arbitrary branch orientation.

Comparison Study on Take-Off and Landing Flight Test Using Ground Observation and DGPS Method (지상관측법 및 DGPS 기법을 활용한 이/착륙 성능 비행시험 비교)

  • Lee, Sang-Jong;Chang, Jae-Won;Jeon, Byoung-Ho;Seong, Kiej-Jeong;Yeom, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.931-938
    • /
    • 2009
  • The flight test is last means of compliance to satisfy airworthiness standards and important to evaluate the performance and safety of the developed aircraft. The flight test technologies are obtained from great numbers of experiences and know-hows and protected. In addition, flight test should be conducted efficiently since its various test conditions and items. Therefore, it is requisite to secure efficient flight test methods. This paper discusses the flight test methods for take-off and landing performance and two kinds of techniques are proposed. By performing real flight tests, they are compared with each other and analyzed through the flight analysis.

Parametric Study for the Low BVI Noise Rotor Blade Design

  • Hwang, Chang-Jeon;Joo, Gene
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.88-98
    • /
    • 2003
  • Compared to the noise limits (CAN7) specified in ICAO Annex 16 for civil helicopters, the Lynx helicopter equipped with BERP blades has only 0.2 EPNdB margin in the approach case although it has more than 4 EPNdB margin in fly-over and take-off conditions. The objectives of the study described in this paper were to devise a low noise main rotor blade for the Lynx using UEAF combined with the high resolution airload model ACROT. A design requirement is that the new blade, KBERP (Korean BERP) blade should achieve a significant reduction in noise during approach(at least 6EPNdB margin) without any noise penalty in fly-over and take-off conditions and minimal performance penalty. It was decided to investigate a tip modification to the BERP blade, employing the twin vortex concept to reduce the BVI noise and to retain the excellent high speed performance characteristics of BERP. Through the parametric study, the KBERP blade with optimized twin vortices has at least a 9 EPNdB noise margin in approach flight condition with only a small penalty in fly-over and take-off conditions. The KBERP tip is thus a very cost effective wav to reduce BVI noise during approach.

A Study on the Oil-Controlling Adapter of Power Take-Off for Armored Recovery Vehicles (구난장갑차 동력인출장치의 오일조절용 어댑터 개발)

  • Park, Kyung-Chul;Shin, Hun-Yong;Lee, Chang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.46-50
    • /
    • 2016
  • When rotating the clutch drum in the power take-off (PTO) gear box of an armored recovery vehicle, lots of inner oil is drained through the adapter by centrifugal force. Therefore, a lack of lubrication is caused by inner oil loss, and the bearing is damaged by overheating. This study, therefore, aims to design an oil-controlling adapter by using shape alteration to prevent oil loss. Both the original and improved adapters were tested at 1,800rpm by using an operational test machine. When applying the original adapter to the gear box, the bearing was damaged by overheating, which was caused by the lack of lubrication. When applying the improved oil-controlling adapter, on the other hand, it prevented the loss of inner oil. Applying the improved adapter is expected to prevent the overheating caused by lack of lubrication.

Investigation of Moving Angle of Power Take off Mechanism on the Efficiency of Wave Energy Converter (파력발전기의 동력인출장치의 회전각도가 효율에 미치는 영향 분석)

  • Do, H.T.;Nguyen, M.T.;Phan, C.B.;Lee, S.Y.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.25-35
    • /
    • 2015
  • The hydraulic power-take-off mechanism (HPTO) is one of the most popular methods in wave energy converters (WECs). However, the conventional HPTO with only one direction motion has a number of drawbacks that limit its power capture capability. This paper proposes an adjustable moving angle wave energy converter (AMAWEC) and investigates the effect of the moving angle on the performance of the wave energy converter to find the optimal moving angle in order to increase the power capture capability as well as energy efficiency. A mathematical model of components from a floating buoy to a hydraulic motor was modeled. A small scale WEC test rig was fabricated to verify the power capture capability and efficiency of the proposed system through experiments.