• Title/Summary/Keyword: T-plate

Search Result 1,307, Processing Time 0.028 seconds

Analysis of friction stir welding characteristics of aluminum alloy using machining center (머시닝센터를 활용한 알루미늄합금의 마찰교반용접 특성 분석)

  • Seung, Young-Chun;Park, Kyoung-Do;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.46-51
    • /
    • 2020
  • The purpose of this study was to analyze the change in tensile strength characteristics of the weld when the welding speed and rotational speed of the tool, which are representative variables of the friction stir welding process. The equipment used in the experiment was Machining Center No. 5. The material used in the experiment is an AA6061-T6 alloy, and a rolled plate with a thickness of 2mm was used. Two experimental variables were selected, the welding speed of the tool and the rotational speed of the tool. The experimental conditions were selected in the range in which a healthy weld could be obtained through a preliminary experiment. The welding speed of the tool was increased to 100mm/min, 200mm/min, and 300mm/min, and the rotational speed of the tool was increased to 1000rpm, 2000rpm, and 3000rpm. As a result of the experiment, the tensile strength increased as the rotational speed of the tool changed at each tool welding speed. In addition, as the welding speed of the tool increased, the tensile strength of the weld was increased. The condition with the highest tensile strength of the weld was found to be a tool feed speed of 300 mm/min and a tool rotation speed of 3000rpm.

Biomechanical Characteristic on Lower Extremity with or without Chronic Ankle Instability during Double Leg Drop Landing (양발 드롭랜딩 시 만성적인 발목 불안정성 유무에 따른 하지주요관절의 역학적 특성)

  • Jeon, Kyoungkyu;Park, Jinhee
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.113-118
    • /
    • 2021
  • Objective: The purpose of this study was to investigate differences of landing strategy between people with or without chronic ankle instability (CAI) during double-leg drop landing. Method: 34 male adults participated in this study (CAI = 16, Normal = 18). Participants performed double-leg drop landing task on a 30 cm height and 20 cm horizontal distance away from the force plate. Lower Extremities Kinetic and Kinematic data were obtained using 8 motion capture cameras and 2 force plates and loading rate was calculated. Independent samples t-test were used to identify differences between groups. Results: Compared with normal group, CAI group exhibits significantly less hip internal rotation angle (CAI = 1.52±8.12, Normal = 10.63±8.44, p = 0.003), greater knee valgus angle (CAI = -6.78±5.03, Normal = -12.38 ±6.78, p = 0.011), greater ankle eversion moment (CAI = 0.0001±0.02, Normal = -0.03±0.05, p = 0.043), greater loading Rate (CAI = 32.65±15.52, Normal = 18.43±10.87, p = 0.003) on their affected limb during maximum vertical Ground Reaction Force moment. Conclusion: Our results demonstrated that CAI group exhibits compensatory movement to avoid ankle inversion during double-leg drop landing compared with normal group. Further study about how changed kinetic and kinematic affect shock absorption ability and injury risk in participants with CAI is needed.

Stiffness model for "column face in bending" component in tensile zone of bolted joints to SHS/RHS column

  • Ye, Dongchen;Ke, Ke;Chen, Yiyi
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.637-656
    • /
    • 2021
  • The component-based method is widely used to analyze the initial stiffness of joint in steel structures. In this study, an analytical component model for determining the column face stiffness of square or rectangular hollow section (SHS/RHS) subjected to tension was established, focusing on endplate connections. Equations for calculating the stiffness of the SHS/RHS column face in bending were derived through regression analysis using numerical results obtained from a finite element model database. Because the presence of bolt holes decreased the bending stiffness of the column face, this effect was calculated using a novel plate-spring-based model through numerical analysis. The developed component model was first applied to predict the bending stiffness of the SHS column face determined through tests. Furthermore, this model was incorporated into the component-based method with other effective components, e.g., bolts under tension, to determine the tensile stiffness of the T-stub connections, which connects the SHS column, and the initial rotational stiffness of the joints. A comparison between the model predictions, test data, and numerical results confirms that the proposed model shows satisfactory accuracy in evaluating the bending stiffness of SHS column faces.

Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios

  • Haido, James H.;Abdul-Razzak, Ayad A.;Al-Tayeb, Mustafa M.;Bakar, B.H. Abu;Yousif, Salim T.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.89-98
    • /
    • 2021
  • Investigations on the dynamic behavior of concrete members, incorporating steel fibers with different aspect ratios, are limited so far and do not covered comprehensively in prior studies. Present endeavor is devoted to examine the dynamic response of the steel fibrous concrete beams and slabs under the influence of impact loading. These members were reinforced with steel fibers in different length of 25 mm and 50 mm. Four concrete mixes were designed and used based on the proportion of long and short fibers. Twenty-four slabs and beams were fabricated with respect to the concrete mix and these specimens were tested in impact load experiment. Testing observations revealed that the maximum dynamic deflection or ductility of the member can be achieved with increasing the fiber length. Structural behavior of the tested structures was predicted using nonlinear finite element analysis with specific material constitutive relationships. Eight nodes plate elements have been considered in the present dynamic analysis. Dynamic fracture energy of the members was calculated and agreement ratio, of more than 70%, was noticed between the experimental and analysis outcomes.

Effect of the composite patch beveling on the reduction of stresses in 2024-T3 Aluminum structure damaged and repaired by composite, hybrid patch repair

  • Belhoucine, A.;Madani, K.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.17-30
    • /
    • 2022
  • The use of composite patches for the reduction of stresses at the level of the damaged zone in aeronautical structures has experienced rapid expansion given its advantages over conventional mechanical processes (riveting, bolting, etc.). Initially, The research axes in this field were aimed at choosing suitable mechanical properties for the composite and the adhesive, then to optimize the shape of the composite patch in order to ensure good load transfer and avoid having a debonding at the level of the edges essentially for the case of a repair by single side where the bending moment is present due to the non-symmetry of the structure. Our work falls within this context; the objective is to analyze by the finite element method the fracture behavior of a damaged plate repaired by composite patch. Stress reduction at the edge is accomplished by creating a variable angle chamfer on the composite patch. The effects of the crack length, the laminate sequence and the nature of the patch as well as the use of a hybrid patch were investigated. The results show clearly that a beveled patch reduces the stress concentrations in the damaged area and even at its edges. The hybrid patch also ensures good durability of the repair by optimizing its stacking sequence and the location of the different layers according to the fibers orientations.

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.117-137
    • /
    • 2022
  • Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.

Comparative Study on the Weldability of Different Shipbuilding Steels

  • Laitinen, R.;Porter, D.;Dahmen, M.;Kaierle, S.;Poprawe, R.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.7-13
    • /
    • 2002
  • A comparison of the welding performance of ship hull structural steels has been made. The weldability of steels especially designed for laser processing was compared to that of conventional hull and structural steels with plate thicknesses up to 12 mm. Autogenous laser beam welding was used to weld butt joints as well as skid and stake welded T-joints. The welds were assessed in accordance with the document "The Classification Societies" Requirements for Approval of $CO_2$ Laser Welding Procedures" Small imperfections in the weld only grew slightly in root bend tests and they only had a minor influence on the fatigue properties of laser fillet welded joints. In Charpy impact tests, the 27 J transition temperature of the weld metal and HAZ ranged from below -60 to $-50^{\circ}C$. The amount of martensite in the weld metal depended on the carbon equivalent of the steel with the highest amounts and highest hardness levels in conventional EH 36 (389 HV 5). Thermomechanically rolled steels contained less martensite and showed a correspondingly lower maximum hardness.ximum hardness.

  • PDF

COMPARATIVE STUDY ON THE WELDABILITY OF DIFFERENT SHIPBUILDING STEELS

  • Laitinen, R.;Porter, D.;Dahmen, M.;Kaierle, S.;Poprawe, R.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.222-228
    • /
    • 2002
  • A comparison of the welding performance of ship hull structural steels has been made. The weldability of steels especially designed for laser processing was compared to that of conventional hull and structural steels with plate thicknesses up to 12 mm. Autogenous laser beam welding was used to weld butt joints as well as skid and stake welded T-joints. The welds were assessed in accordance with the document "The Classification Societies′ Requirements for Approval of $CO_2$ Laser Welding Procedures". Small imperfections in the weld only grew slightly in root bend tests and they only had a minor influence on the fatigue properties of laser fillet welded joints. In Charpy impact tests, the 27 J transition temperature of the weld metal and HAZ ranged from below -60 to -5$0^{\circ}C$. The amount of martensite in the weld metal depended on the carbon equivalent of the steel with the highest amounts and highest hardness levels in conventional EH 36 (389 HV 5). Thermomechanically rolled steels contained less martensite and showed a correspondingly lower maximum hardness.

  • PDF

Thermal diffusion experiment of impulsive heat in subcooled liquid nitrogen (과냉 액체질소 내에서 순간적 열확산 실험)

  • Choi, J.H.;Ha, J.C.;Byun, J.J.;Chang, H.M.;Kim, H.M.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • Transient heat transfer caused by an impulsive heating in subcooled liquid nitrogen is investigated experimentally. This study is part of out ongoing efforts directed to a stable cryogenic cooling system lot superconducting fault current limiters (SFCL). A thin heater attached by epoxy on one surface of a GFRP plate is immersed in liquid-nitrogen bath at temperatures between 77 K and 55 K. A strong heat flux up to $150W/cm^2$ is generated lot 100 ms, and the temperature of the heater sulfate is measured as a function of time. The behavior of bubbles on the heating surface can be explained by comparing the measured temperature history for vertical and two horizontal (up and down) orientations. It is concluded that the subcooling of liquid nitrogen below 70 K is very effective in suppressing bubbles, resulting in better thermal protection and faster recovery from an impulsive heat.

Experimental Structural Performance Evaluation of Hybrid Damper Combining with High Damping Rubber and Steel Slit (고감쇠고무와 강재슬릿이 결합된 하이브리드 댐퍼의 실험적 구조성능평가)

  • Lee, Joon-Ho;Park, Byung-Tae;Kim, Yu-Seong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • It is effective to apply hybrid damping device that combine separate damping device to cope with various seismic load. In this study, HRS hybrid damper(hybrid rubber slit damper) in which high damping rubber and steel slit plate are combined in parallel was proposed and structural performance tests were performed to review the suitability for seismic performance. Cyclic Loading tests were performed in accordance with criteria presented in KDS 41 17 00 and MOE 2019. As a result of the test, the criteria of KDS 41 17 00 and MOE2019 was satisfied, and the amount of energy dissipation increased due to the shear deformation of the high-damping rubber at low displacement. Result of performing the RC frame test, the allowable story drift ratio was satisfied, and the amount of energy dissipation increased in the reinforced specimen compared to the non-reinforced specimen.