• Title/Summary/Keyword: T-cell Antigen Receptor

Search Result 84, Processing Time 0.03 seconds

Current Perspectives on Emerging CAR-Treg Cell Therapy: Based on Treg Cell Therapy in Clinical Trials and the Recent Approval of CAR-T Cell Therapy (장기이식 거부반응과 자가면역질환 치료제로서의 CAR Treg 세포치료제의 가능성: Treg 세포치료제 임상시험 현황과 CAR T 세포치료제 허가 정보를 바탕으로)

  • Kang, Koeun;Chung, Junho;Yang, Jaeseok;Kim, Hyori
    • Korean Journal of Transplantation
    • /
    • v.31 no.4
    • /
    • pp.157-169
    • /
    • 2017
  • Regulatory T cells (Treg) naturally rein in immune attacks, and they can inhibit rejection of transplanted organs and even reverse the progression of autoimmune diseases in mice. The initial safety trials of Treg against graft-versus-host disease (GVHD) provided evidence that the adoptive transfer of Treg is safe and capable of limiting disease progression. Supported by such evidence, numerous clinical trials have been actively investigating the efficacy of Treg targeting autoimmune diseases, type I diabetes, and organ transplant rejection, including kidney and liver. The limited quantity of Treg cells harvested from peripheral blood and subsequent in vitro culture have posed a great challenge to large-scale clinical application of Treg; nevertheless, the concept of CAR (chimeric antigen receptor)-Treg has emerged as a potential resolution to the problem. Recently, two CAR-T therapies, tisagenlecleucel and axicabtagene ciloleucel, were approved by the US FDA for the treatment of refractory or recurrent acute lymhoblastic leukemia. This approval could serve as a guideline for the production protocols for other genetically engineered T cells for clinical use as well. The phase I and II clinical trials of these agents has demonstrated that genetically engineered and antigen-targeting T cells are safe and efficacious in humans. In conclusion, both the promising results of Treg cell therapy from the clinical studies and the recent FDA approval of CAR-T therapies are paving the way for CAR-Treg therapy in clinical use.

Allograft Immune Reaction of Kidney Transplantation Part 1. Mechanism of Allograft Rejection (신이식 후 면역반응의 이해 - 1부. 이식 거부 반응의 기전 -)

  • Kang, Hee-Gyung
    • Childhood Kidney Diseases
    • /
    • v.12 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Kidney allograft transplantation is the most effective method of renal replacement for end stage renal disease patients. Still, it is another kind of 'disease', requiring immunosuppression to keep the allograft from rejection(allograft immune reaction). Immune system of the allograft recipient recognizes the graft as a 'pathogen (foreign or danger)', and the allograft-recognizing commanderin-chief of adaptive immune system, T cell, recruits all the components of immune system for attacking the graft. Proper activation and proliferation of T cell require signals from recognizing proper epitope(processed antigen by antigen presenting cell) via T cell receptor, costimulatory stimuli, and cytokines(IL-2). Thus, most of the immunosuppressive agents suppress the process of T cell activation and proliferation.

  • PDF

Key Structural Features of PigCD45RO as an Essential Regulator of T-cell Antigen Receptor Signaling (T-세포 항원 수용체 매개 신호전달 조절자로서 돼지 CD45RO 구조특성)

  • Chai, Han-Ha;Lim, Dajeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.211-226
    • /
    • 2019
  • Pig CD45, the leukocyte common antigen, is encoded by the PTPRC gene and CD45 is a T cell-type specific tyrosine phosphatase with alternative splicing of its exons. The CD45 is a coordinated regulator of T cell antigen receptor (TCR) signal transduction achieved by dephosphorylating the phosphotyrosine of its substances, including $CD3{\zeta}$ chain of TCR, Lck, Fyn, and Zap-70 kinase. A dysregulation of CD45 is associated with a multitude of immune disease and has been a target for immuno-drug discovery. To characterize its key structural features with the effects of regulating TCR signaling, this study predicted the unknown structure of pig CD45RO (the smallest isoform) and the complex structure bound to the ITAM (REEpYDV) of $CD3{\zeta}$ chain via homology modeling and docking the peptide, based on the known human CD45 structures. These features were integrated into the structural plasticity of extracellular domains and functional KNRY and PTP signature motifs (the role of a narrow entrance into ITAM binding site) of the tyrosine phosphatase domains in a cytoplasmic region from pig CD45RO. This contributes to the selective recognition of phosphotyrosine from its substrates by adjusting the structural stability and binding affinity of the complex. The characterized features of pigCD45RO can be applied in virtual screening of the T-cell specific immunomodulator.

Emerging Co-signaling Networks in T Cell Immune Regulation

  • Jung, Keunok;Choi, Inhak
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.184-193
    • /
    • 2013
  • Co-signaling molecules are surface glycoproteins that positively or negatively regulate the T cell response to antigen. Co-signaling ligands and receptors crosstalk between the surfaces of antigen-presenting cells (APCs) and T cells, and modulate the ultimate magnitude and quality of T cell receptor (TCR) signaling. In the past 10 years, the field of co-signaling research has been advanced by the understanding of underlying mechanisms of the immune modulation led by newly identified co-signaling molecules and the successful preclinical and clinical trials targeting co-inhibitory molecules called immune checkpoints in the treatment of autoimmune diseases and cancers. In this review, we briefly describe the characteristics of well-known B7 co-signaling family members regarding the expression, functions and therapeutic implications and to introduce newly identified B7 members such as B7-H5, B7-H6, and B7-H7.

IMGT Unique Numbering for Standardized Contact Analysis of Immunoglobulin/antigen and T cell receptor/peptide/MHC Complexes

  • Kaas, Quentin;Chiche, Laurent;Lefrane, Marie-Paule
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.209-214
    • /
    • 2005
  • Immunoglobulins (IG) , T cell receptors (TR) and major histocompatibility complex (MHC) are major components of the immune system. Their experimentally determined three-dimensional (3D) structures are numerous and their retrieval and comparison is problematic. IMGT, the international ImMunoGeneTics information system$^{\circledR}$(http://imgt.cines.fr), has devised controlled vocabulary and annotation rules for the sequences and 3D structures of the IG TR and MHC. Annotated data from IMGT/3D sructure-DB, the IMGT 3D structure database, are used in this paper to compare 3D structure of the domains and receptor, and to characterize IG/antigen, peptide/MHC and TR/peptide/MHC interfaces. The analysis includes angle measures to assess receptor flexibility, structural superimposition and contact analysis. Up-to-date data and analysis results are available at the IMGT Web site, http://imgt.cines.fr.

  • PDF

Human CD8+ T-Cell Populations That Express Natural Killer Receptors

  • June-Young Koh;Dong-Uk Kim;Bae-Hyeon Moon;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.8.1-8.13
    • /
    • 2023
  • CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.

Advanced T and Natural Killer Cell Therapy for Glioblastoma

  • Wan-Soo Yoon;Dong-Sup Chung
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.356-381
    • /
    • 2023
  • Although immunotherapy has been broadly successful in the treatment of hematologic malignancies and a subset of solid tumors, its clinical outcomes for glioblastoma are still inadequate. The results could be due to neuroanatomical structures such as the blood-brain-barrier, antigenic heterogeneity, and the highly immunosuppressive microenvironment of glioblastomas. The antitumor efficacy of endogenously activated effector cells induced by peptide or dendritic cell vaccines in particular has been insufficient to control tumors. Effector cells, such as T cells and natural killer (NK) cells can be expanded rapidly ex vivo and transferred to patients. The identification of neoantigens derived from tumor-specific mutations is expanding the list of tumor-specific antigens for glioblastoma. Moreover, recent advances in gene-editing technologies enable the effector cells to not only have multiple biological functionalities, such as cytokine production, multiple antigen recognition, and increased cell trafficking, but also relieve the immunosuppressive nature of the glioblastoma microenvironment by blocking immune inhibitory molecules, which together improve their cytotoxicity, persistence, and safety. Allogeneic chimeric antigen receptor (CAR) T cells edited to reduce graft-versus-host disease and allorejection, or induced pluripotent stem cell-derived NK cells expressing CARs that use NK-specific signaling domain can be a good candidate for off-the-shelf products of glioblastoma immunotherapy. We here discuss current progress and future directions for T cell and NK cell therapy in glioblastoma.

Construction, and In Vitro and In Vivo Analyses of Tetravalent Immunoadhesins

  • Cho, Hoonsik;Chung, Yong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1066-1076
    • /
    • 2012
  • Previous observations demonstrated that various immunosuppressive agents and their combination therapies can increase allograft survival rates. However, these treatments may have serious side effects and cannot substantially improve or prolong graft survival in acute graft-versus-host disease (GVHD). To improve the therapeutic potency of divalent immunoadhesins, we have constructed and produced several tetravalent forms of immunoadhesins comprising each of cytotoxic T-lymphocyte-associated antigen-4 (CTLA4), CD2, and lymphocyte activation gene-3 (LAG3). Flow cytometric and T cell proliferation analyses displayed that tetravalent immunoadhesins have a higher binding affinity and more potent efficacy than divalent immunoadhesins. Although all tetravalent immunoadhesins possess better efficacies, tetravalent forms of CTLA4-Ig and LAG3-Ig revealed higher inhibitory effects on T cell proliferation than tetravalent forms of TNFR2-Ig and CD2-Ig. In vitro mixed lymphocytes reaction (MLR) showed that combined treatment with tetravalent CTLA4-Ig and tetravalent LAG3-Ig was highly effective for inhibiting T cell proliferation in both human and murine allogeneic stimulation. In addition, both single tetravalent-form and combination treatments can prevent the lethality of murine acute GVHD. The results of this study demonstrated that co-blockade of the major histocompatibility complex class (MHC)II:T cell receptor (TCR) and CD28:B7 pathways by using tetravalent human LAG3-Ig and CTLA4-Ig synergistically prevented murine acute GVHD.

IQGAP1, a signaling scaffold protein, as a molecular target of a small molecule inhibitor to interfere with T cell receptor-mediated integrin activation

  • Li, Lin-Ying;Nguyen, Thi Minh Nguyet;Woo, Eui Jeon;Park, Jongtae;Hwang, Inkyu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.361-373
    • /
    • 2020
  • Integrins such as lymphocyte function-associated antigen -1 (LFA-1) have an essential role in T cell immunity. Integrin activation, namely, the transition from the inactive conformation to the active one, takes place when an intracellular signal is generated by specific receptors such as T cell receptors (TCRs) and chemokine receptors in T cells. In an effort to explore the molecular mechanisms underlying the TCR-mediated LFA-1 activation, we had previously established a high-throughput cell-based assay and screened a chemical library deposited in the National Institute of Health in the United States. As a result, several hits had been isolated including HIKS-1 (Benzo[b]thiophene-3-carboxylic acid, 2-[3-[(2-carboxyphenyl) thio]-2,5-dioxo-1-pyrrolinyl]-4,5,6,7-tetrahydro-,3-ethyl ester). In an attempt to reveal the mode of action of HIKS-1, in this study, we did drug affinity responsive target stability (DARTS) assay finding that HIKS-1 interacted with the IQ motif containing GTPase activating protein 1 (IQGAP1), a 189 kDa multidomain scaffold protein critically involved in various signaling mechanisms. Furthermore, the cellular thermal shift assay (CETSA) provided compelling evidence that HIKS-1 also interacted with IQGAP1 in vivo. Taken together, it can be concluded that HIKS-1 interferes with the TCR-mediated LFA-1 activation by interacting with IQGAP1 and thereby disrupting the signaling pathway for LFA-1 activation.