• Title/Summary/Keyword: T-S fuzzy control

Search Result 219, Processing Time 0.031 seconds

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.

Realization of Intelligence Controller Using Genetic Algorithm.Neural Network.Fuzzy Logic (유전알고리즘.신경회로망.퍼지논리가 결합된 지능제어기의 구현)

  • Lee Sang-Boo;Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 2001
  • The FLC(Fuzzy Logic Controller) is stronger to the disturbance and has the excellent characteristic to the overshoot of the initialized value than the classical controller, and also can carry out the proper control being out of all relation to the mathematical model and parameter value of the system. But it has the restriction which can't adopt the environment changes of the control system because of generating the fuzzy control rule through an expert's experience and the fixed value of the once determined control rule, and also can't converge correctly to the desired value because of haying the minute error of the controller output value. Now there are many suggested methods to eliminate the minute error, we also suggest the GA-FNNIC(Genetic Algorithm Fuzzy Neural Network Intelligence Controller) combined FLC with NN(Neural Network) and GA(Genetic Algorithm). In this paper, we compare the suggested GA-FNNIC with FLC and analyze the output characteristics, convergence speed, overshoot and rising time. Finally we show that the GA-FNNIC converge correctly to the desirable value without any error.

  • PDF

Design of a Fuzzy-Sliding Mode Controller for an Uncertain Nonlinear System (불확실한 비선형 시스템의 퍼지 슬라이딩모드 제어기 설계)

  • Huh, S.H.;Park, G.T.;Kim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2290-2292
    • /
    • 2000
  • Robustness characteristics to the modelling imprecision and some disturbances could be achieved in sliding mode control. However, there are drawbacks such as discontinuous control and chattering. Recently, many researches have been developing to solve such the problems. In sliding mode control, overall control input could be divided into two parts which are equivalent control input and sliding mode control input. Sliding mode control input is a function of the switching surfaces and can be designed with their linear combinations. In this paper, the sliding mode control input is designed by TSK fuzzy model. The proposed method gives the continuous sliding control input and reject the chattering phenomenon.

  • PDF

Fuzzy Estimation for Fault Location

  • Tipsuwanporn, V.;Tuppadung, Y.;Suesut, T.;Rukkaphan, S.;Junkrob, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.453-453
    • /
    • 2000
  • This paper presented Fuzzy logic application to Electrical power system analysis for fault location estimation in distribution lines and apply the Power system theory to be fuzzy logic database. The case study referred to the Overhead distribution line of the Provincial Electricity Authority (PEA.), Thailand which mostly the distribution line of PEA. are Radial schemes. These benefits include reduced outage time, help in locating momentary faults, enhance safety to the line crews and provide notification of an outage without receiving calls from the consumer, Which these benefits also increase Reliability, Stability and Efficiency.

  • PDF

Design of the Robust Controller for the Discrete-Time Nonlinear System with Time-Delay Via Fuzzy Approach (퍼지 기법을 이용한 시간 지연을 가지는 이산시간 비선형 시스템에 대한 강인 제어기 설계)

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2723-2725
    • /
    • 2005
  • In this paper, a robust $H{\infty}$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-delayed state. Then parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H{\infty}$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique.

  • PDF

Application of Fuzzy Control for Power System Stabilization (전력계통의 안정화를 위한 퍼지제어의 적용)

  • Chong, H.H.;Lee, J.T.;Chong, D.I.;Joo, S.M.;Kim, H.J.;Lee, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.109-111
    • /
    • 1993
  • This paper proposed a regulation technique of scale factors on fuzzy controller for power system stabilization. These scale factors arc regulated by a given exponential function with performance index variables. Simulation results show that the proposed fuzzy control technique are more powerful than conventional ones in faces of usefulness and robustness.

  • PDF

A Study on Fuzzy Logic Method for the Assessment of Tunnel Concrete Lining (터널 콘크리트 라이닝의 상태평가를 위한 퍼지추론기법 연구)

  • 이성원;조만섭;이광호;이석원;배규진;안영기
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.337-349
    • /
    • 1999
  • There are many difficulties to the engineers in the assessment of tunnel safety. Consequently, objective assessment of concrete lining is hard even by the experts of tunnel assessment. Of several difficulties in the assessment of tunnel safety, in this study, tunnel concrete lining was focussed iud evaluated quantitatively and objectively using the Fuzzy theory which it generally considered to be appropriate for the assessment, control and judgment. T-FLAS based on fuzzy theory was developed in this study for the quantitative and objective assessment of the concrete lining in tunnels. Based on the application of T-FLAS on the evaluated field data, it was shown that the assessment system using fuzzy theory(T-FLAS) can be the effective and objective method for the assessment of concrete lining.

  • PDF

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

Steam Temperature Controller Design of Power Plant Superheater (발전기 과열기의 증기 온도 제어기 설계)

  • Hong, Hyun-Mun;Jeon, B.S.;Kim, J.G.;Kang, G.B.;Lee, B.S.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.412-414
    • /
    • 2005
  • In this paper, we present a method of fuzzy controller design for the power plant superheater in the form of bilinear system. For the steam temperature control, the input variables are constructed by the area of difference between the profiles estimated from bilinear observer and reference profiles, and the time rate of change. We estimate the control rules by T. Takagi and M. Sugeno's fuzzy model. The feasibilities of the suggested method are illustrated via the computer simulation result.

  • PDF

T-S Fuzzy Model Mobile Robot Trajectory Tracking Control using SOSTOOL (SOSTOOL을 이용한 T-S 퍼지모델 이동로봇의 경로추적 제어)

  • Kim, Cheol-Joong;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1519-1520
    • /
    • 2008
  • 이 논문에서는 이동로봇의 경로추적문제를 다항 퍼지 모델로 나타내고 SOSTOOL을 이용하여 해결하고자 한다. 제안하는 방법은 기존의 LMI을 사용한 방법과 비교하여 작은 제어입력과 이동로봇이 주어진 경로를 쫓아감에 있어 매끄러운 결과를 나타냄을 알 수 있다. 본 논문에서는 이동로봇 기구학을 시스템의 안정성 문제로 변형하고 이를 퍼지모델로 구성하여 SOSTOOL을 사용하여 제어입력을 구하고 모의실험을 통해 그 결과를 검증하도록 한다.

  • PDF