• Title/Summary/Keyword: T-S Diagram

Search Result 161, Processing Time 0.032 seconds

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

An Analysis of the Types of Teacher and Student's Concept on Ray-Tracing and Spectrum in the Middle School (광선추적과 스펙트럼에 대한 교사와 중학생의 개념 유형 분석)

  • Lee, Jae-Bong;Nam, Kyung-Woon;Son, Jeong-Woo;Lee, Sung-Muk
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.6
    • /
    • pp.1189-1205
    • /
    • 2004
  • The purpose of this study is to understand the types of teacher and student's concept on ray-tracing and spectrum in middle school. This study suggest key-concepts that is most important to "Light" unit in the seven grades: the ray-tracing and the spectrum. We examined the types of teacher and student's concept. We selected 10 teacher and 328 students who had learned by 10 teachers in Seoul and Gyeonggi. The problems were composed with the question item regarding all ray-tracing or the spectrum. From the analysis, it was found that the types of teacher and student's concept on ray-tracing and spectrum is different. The most of teacher and student didn't understand the basic principle of image formation. In case of context about formation of image by reflection and refraction, because they don't know ray-tracing, they do not try to find the position of the image by drawing two rays. Most of them used one ray comes from the one position of the object and indicated the position of image by memorized position. Also almost there was not a case which uses a ray tracing accurately. In the case of understanding color, they didn't understand the concept of color(or spectrum) and teachers represented to students the color phenomena without explanation of principles. In the result teachers and students would learn color science by rote.

DThe Effect of Thickness Ratio and Hight Ratio of Inner Beam on Strength and Stiffness of Frame in Shuttle Car for LMTT (Inner Beam의 두께비 및 높이비가 LMTT용 Shuttle Car의 Frame 강도 및 강성에 미치는 영향)

  • Han, GD.S.;Han, G.J.;Lee, K.S.;Shim, J.J.;Kim, T.H.
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.207-211
    • /
    • 2004
  • The final goal of this research is to establish the relative dangerousness D/B for factors on seakeeping performance. This D/B is essential to develope the seakeeping performance evaluation system built-on-ship. The system is composed of the apparatus for measuring a vertical acceleration to be generated by the ship's motions, computer for calculating the synthetic seakeeping performance index and monitor for displaying the evaluating diagram of navigational safety of ship. In this paper, a methodology on the establishment of the relative dangerousness D/B for factors on seakeeping performance is presented by a numerical simulations, playing an important role on the algorithm of the program for calculating the synthetic seakeeping performance index. Finally, It is investigated whether the relative dangerousness D/B can be realized an accurate values according to the loading conditions, weather conditions, wave directions end present ship's speed of a model ship.

Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics (유역특성에 의한 합성단위도의 유도에 관한 연구)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

A Propeller Design Method with a New Blade Section : Applied to Container Ships (새로운 날개단면을 이용한 프로펠러 설계법 - 콘테이너선에 응용 -)

  • J.T. Lee;M.C. Kim;J.W. Ahn;S.H. Van;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.40-51
    • /
    • 1991
  • A Propeller design method using the newly developed blade section(KH18), which behaves better cavitation characteristics, is presented. Experimental results for two-dimensional foil sections show that the lift-drag curve and the cavitation-free bucket diagram of the new blade section are wider comparing to those of the existion NACA sections. This characteristic of the new section is particularly important for marine propeller applications since angle of attack variation of the propeller blade operating behind a non-uniform ship's wake is relatively large. A lifting surface theory is used for the design of a propeller with the developed section for a 2700 TEU container ship. Since the most suitable chordwise loading shape is not known a priori, chordwise loading shape is chosen as a design parameter. Five propellers with different chordwise loading shapes and different foil sections are designed and tested in the towing tank and cavitation tunnel at KRISO. It is observed by a series of extensive model tsets that the propeller(KP197) having the chordwise loading shape, which has less leading edge loading at the inner radii and more leading edge loading at the outer radii of 0.7 radius, has higher propulsive efficiency and better cavitation characteristics. The KP197 propeller shows 1% higher efficiency, 30% cavitation volume reduction and 9% reduction of fluctuating pressure level comparing to the propeller with an NACA section. More appreciable efficiency gain for the new blade section propeller would be expected by reduction of expanded blade area considering the better cavitation characteristics of the new blade section.

  • PDF

Geochemistry and Metamorphism of the Gneisses in Gwangyang-Hadong Area (광양-하동지역에 분포하는 편마암류의 지구화학 및 변성작용)

  • Park, Bae-Young;Suh, Gu-Won
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.221-245
    • /
    • 2008
  • The precambrian granitic gneiss and porphyroblastic gneiss are widely distributed in the Gwangyang-Hadong area of Korea. This study focuses on the geochemical properties and metamorphic P-T conditions of these gneisses. These gneisses are plotted according to granodiorite domain on an IUGS silica-alkali diagram. Geochemical properties of major elements suggest that these rocks are of the sub-alkalic rock series, and were farmed from S-type magmas which were generated in a syn-collision tectonic environment. The amounts of trace elements (Zn, Sc, Sr, V, etc.) decreased as $SiO_2$ concentrations increased. Almandine and spessartine mol%'s and XFe are higher in garnet rims, while pyrope mol%'s are higher in the garnet cores. This seems to be the result of garnet growth and retrogressive metamorphism. Metamorphic zones are divided into sillimanite-cordierite, sillimanite, garnet, and biotite zones. Metamorphic P-T conditions estimated from the gneisses indicate high temperature and low to medium pressure metamorphism (689-757$^{\circ}C$, 5.0-5.6 kbar), followed by medium temperature, low pressure retrorade metamorphism (579-628$^{\circ}C$, 3.1-4.5 kbar), and overprinted retrogade metamorphism (502-558$^{\circ}C$, 1.6-2.3 kbar).

On the Tensor Product of m-Partition Algebras

  • Kennedy, A. Joseph;Jaish, P.
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.679-710
    • /
    • 2021
  • We study the tensor product algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm), where Pk(x) is the partition algebra defined by Jones and Martin. We discuss the centralizer of this algebra and corresponding Schur-Weyl dualities and also index the inequivalent irreducible representations of the algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm) and compute their dimensions in the semisimple case. In addition, we describe the Bratteli diagrams and branching rules. Along with that, we have also constructed the RS correspondence for the tensor product of m-partition algebras which gives the bijection between the set of tensor product of m-partition diagram of Pk(n1) ⊗ Pk(n2) ⊗ ⋯ ⊗ Pk(nm) and the pairs of m-vacillating tableaux of shape [λ] ∈ Γkm, Γkm = {[λ] = (λ1, λ2, …, λm)|λi ∈ Γk, i ∈ {1, 2, …, m}} where Γk = {λi ⊢ t|0 ≤ t ≤ k}. Also, we provide proof of the identity $(n_1n_2{\cdots}n_m)^k={\sum}_{[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ f[λ]mk[λ] where mk[λ] is the multiplicity of the irreducible representation of $S{_{n_1}}{\times}S{_{n_2}}{\times}....{\times}S{_{n_m}}$ module indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$, where f[λ] is the degree of the corresponding representation indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ and ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}=\{[{\lambda}]=({\lambda}_1,{\lambda}_2,{\ldots},{\lambda}_m){\mid}{\lambda}_i{\in}{\Lambda}^k_{n_i},i{\in}\{1,2,{\ldots},m\}\}$ where ${\Lambda}^k_{n_i}=\{{\mu}=({\mu}_1,{\mu}_2,{\ldots},{\mu}_t){\vdash}n_i{\mid}n_i-{\mu}_1{\leq}k\}$.

Microstructure and Hardness of Surface Melting Hardened Zone of Mold Steel, SM45C using Yb:YAG Disk Laser

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yoon, Tae-Jin;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • This study applied laser surface melting process using CW(Continuous wave) Yb:YAG laser and cold-work die steel SM45C and investigated microstructure and hardness. Laser beam speed, power and beam interval are fixed at 70 mm/sec, 2.8 kW and $800{\mu}m$ respectively. Depth of Hardening layer(Melting zone) was a minimum of 0.8 mm and a maximum of 1.0 mm that exceeds the limit of minimum depth 0.5 mm applying trimming die. In all weld zone, macrostructure was dendrite structure. At the dendrite boundary, Mn, Al, S and O was segregated and MnS and Al oxide existed. However, this inclusion didn't observe in the heat-affected zone (HAZ). As a result of interpreting phase transformation of binary diagram, MnS crystallizes from liquid. Also, it estimated that Al oxide forms by reacting with oxygen in the atmosphere. The hardness of the melting zone was from 650 Hv to 660 Hv regardless of the location that higher 60 Hv than the hardness of the HAZ that had maximum 600 Hv. In comparison with the size of microstructure using electron backscatter diffraction(EBSD), the size of microstructure in the melting zone was smaller than HAZ. Because it estimated that cooling rate of laser surface melting process is faster than water quenching.

The Seasonal Distribution Characteristics of Watermass and Fishery Creatures in the Adjacent Sea of Naro Island (나로도 주변해역의 수괴 및 어업생물의 계절별 분포특성)

  • PARK, Ju-Sam
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.1
    • /
    • pp.132-143
    • /
    • 2005
  • In order to investigate the seasonal variation of watermass and fishery creatures in the adjacent sea of Naro Island, an oceanographic observation was carried out seasonally on the fishing grounds, and the sales performance data of the fisheries cooperative's joint market of Naro Island was examined by using a principal component analysis. The temperature and salinity ranged from 8.1 $^{\circ}C$ to 13.7 $^{\circ}C$ and from 33.1 psu to 34.3 psu in spring, from 14.5 $^{\circ}C$ to 24.2 $^{\circ}C$ and from 30.5 psu to 34.1 psu in summer, from 14.8 $^{\circ}C$ to 18.6 $^{\circ}C$ and from 30.1 psu to 34.0 psu in autumn, and from 4.3 $^{\circ}C$ to 10.1 $^{\circ}C$ and from 33.1 psu to 34.9 psu in winter, respectively. In winter and spring, the offshore water spread out to all sea areas of all water layers. In summer, the mixed waters covered the entire sea surface whereas the mixed water and offshore water covered the bottom. In autumn, the coastal water and mixed water appeared on the surface, but the mixed water was distributed widely on the bottom and the offshore water began to appear in the open sea. For two years from 2002 to 2003, 58 fishery creature species in total were sold in the fisheries cooperative's joint market of Naro Island. In general, the total of 50% fish were sold, and crustacea and mollusc by each 25%. Medium shrimp, whiparm octopus, blue crab, and octopus predominated. A number of species and biomass of fishery creatures were sold mostly in April and May, while they were sold the least in January and February. The seasonal sales results showed that mullet, angler, short necked clam, large shrimp, and webfoot octopus were sold mainly in spring, tonguefish, flathead, pomfret, glass eel, blue crab, whiparm octopus, and squid were sold mainly in summer, and octopus, medium shrimp, and spanish mackerel were sold mainly in autumn.

Statistical Analysis on Microcrack Length Distribution in Tertiary Crystalline Tuff (제3기 결정질 응회암에서 발달하는 미세균열의 길이 분포에 대한 통계적 분석)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.23-37
    • /
    • 2011
  • The scaling properties on the length distribution of microcrack populations from Tertiary crystalline tuff are investigated. From the distribution charts showing length range with 15 directional angles and five groups(I~V), a systematic variation appears in the mean length with microcrack orientation. The distribution charts are distinguished by the bilaterally symmetrical pattern to nearly N-S direction. The whole domain of the length-cumulative frequency diagram for microcrack populations can be divided into three sections in terms of phases of the distribution of related curves. Especially, the linear middle section of each diagram of five groups represents a power-law distribution. The frequency ratio of linear middle sections of five groups ranges from 46.6% to 67.8%. Meanwhile, the slope of linear middle section of each group shows the order: group V($N60{\sim}90^{\circ}E$, -2.02) > group IV($N20{\sim}60^{\circ}E$, -1.55) > group I($N60{\sim}90^{\circ}W$, -1.48), group II($N10{\sim}60^{\circ}W$, -1.48) > group III($N10^{\circ}W{\sim}N20^{\circ}E$, -1.06). Five sub-populations(five groups) that closely follow the power-law length distribution show a wide range in exponents( -1.06 - -2.02). These differences in exponent among live groups emphasizes the importance of orientation effect. In addition, breaks in slope in the lower parts of the related curves represent the abrupt development of longer lengths, which is reflected in the decrease in the power-law exponent. Especially, such a distribution pattern can be seen from the diagram with $N10{\sim}20^{\circ}E,\;N10{\sim}20^{\circ}W$ and $N60{\sim}70^{\circ}W$ directional angles. These three directional angles correspond with main directions of faults developed around the study area. The distribution chart showing the individual characteristics of the length-cumulative frequency diagrams for 15 directional angles were made. By arraying above diagrams according to the categories of three groups(A, B and C), the differences in length-frequency distributions among these groups can be easily derived. The distribution chart illustrates the importance of analysing microcrack sets separately. From the related chart, the occurrence frequency of shorter microcracks shows the order: group A > group B > group C. These three types of distribution patterns could reveal important information on the processes occurred during microcrack growth.