• 제목/요약/키워드: T-Joints

검색결과 489건 처리시간 0.033초

내부 환보강 X형 및 T형 관이음부의 강도산정과 최적설계 (Strength Prediction and Optimum Design of Internally Ring-Stiffened Tubular X-and T-Joints)

  • 조현만;류연선;이현진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.315-320
    • /
    • 2007
  • An effective reinforcement method for steel tubular joints having a large chord diameter is the use of internal ring stiffeners. This paper presents the results of a numerical study on the static strength of internally ring-stiffened tubular X- and T-joints subjected to brace axial compression loading. Nonlinear finite element analyses are used to compute the joint strength. The influence of geometrical parameters has been studied and the maximum reinforcement effect of a ring stiffener has been evaluated. A strength ratio is defined. by the ratio of ring-stiffened joint strength to unstiffened joint strength, and an equation for this strength ratio is derived by regression analysis. Design optimization for ring stiffener of tubular joints is carried out using metropolis genetic algorithm.

  • PDF

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

접착이음의 강도평가에 대한 해석 (Analysis for Strength Estimation of Adhesive Joints)

  • 박성완
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.62-73
    • /
    • 2005
  • The objects of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of adhesive joint of different three type such as butt joint, T-shape, and single lap Joints. The criteria of peel occurrence at the bond terminus was suggested. Peel loads of three type adhesive joint (butt Joint, T-shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with stress singularity factor$(K_{prin})$ when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity $(K_{prin})$ can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress has not affected singularity at the bond terminus. Average principal stress$(K_{av})$ can use as the criteria of peel occurrence at the bond terminus.

파이프 골조 온실의 조립 연결구 내력 시험 (Experimental Analysis on Yield Strength of Pipe Connectors and Joints for Pipe Framed Greenhouses)

  • 남상운
    • 한국농공학회지
    • /
    • 제43권6호
    • /
    • pp.113-119
    • /
    • 2001
  • Experiments on the yield strength of pipe connectors made of metal wire, joint pins, pole pipes, multi span insertion joints, and T-clamp joints used in pipe houses were conducted. The strength of connections of a pipe connector made of metal wire was adequate but it had a big difference according to loading direction. Therefore as it is installed, its direction should be taken into consideration. The collapse load of pipes connected with a joint pin was lower than that of single pipes. In the part of frame member at which the great bending moment occurs, the use of joint pin should be avoided. Also experimental results showed that pole pipes for use in a part of frame buried under the ground were safe, and the strength of multi span insertion joints should be increased. The resistant moment of T-clamp was about 13.7% of a single pipe. In case that the external forces acting on left and right rafter are different. a unsymmetrical rotational force is produced at the multi span joint. If it is expected that the actual bending moment on the multi span joint is larger than resistant moment of T-clamp, a reinforcement to safely resist the rotational force is required.

  • PDF

유전 알고리즘을 이용한 휴머노이드 로봇의 동작연구 (Motion Study for a Humanoid Robot Using Genetic Algorithm)

  • 공정식;이보희;김진걸
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.84-92
    • /
    • 2006
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joint don't maintain optimally, it is hard to sustain the battery power during the working period. Also, if a gait trajectory doesn't have optimal state, the expected lift span of joints tends to be decreased. Also, if a gait trajectory doesn't have optimal state, the expected lift span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration fur the joint motion and distributed computation of tile humanoid, ISHURO, and suggest its result such as structure of the network and a disturbance observer.

Experimental and numerical study on the failure of sandwich T-joints under pull-off loading

  • Nguyen, Khanh-Hung;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho;Shul, Chang-Won;Yang, Myung-Seog;Jun, Seung-Moon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.229-237
    • /
    • 2012
  • In this study, the failure mechanism of sandwich-to-laminate T-joints under pull-off loading was investigated by experiment and the finite element method. A total of 26 T-joint specimens were manufactured and tested in order to investigate the effects of both adhesive thickness (0.4, 2.0, and 4.0 mm) and environmental conditions on the failure of the joints. The results showed that failure occurred mainly as intralaminar failure in the first layer of the sandwich face, which was contacted to the paste adhesive. The failure load did not significantly change with increasing adhesive thickness in both RTD (Room Temperature and Dry) and ETW (Elevated Temperature and Wet) conditions. In the case of ETW conditions, however, the failure load increased slightly with an increase in adhesive thickness. The joints tested in ETW conditions had higher failure loads than those tested in RTD conditions. In addition to the experiment, a finite element analysis was also conducted to investigate the failure of the joint. The stress inside the first ply of the sandwich face was of interest because during the experiment, failure always occurred there. The analysis results showed good agreement with the trend of experimental results, except for the case of the smallest adhesive thickness. The highest stress was predicted in the regions where initial failure was observed in the experiment. The maximum stress was almost constant when the adhesive thickness was beyond 2 mm.

반복하중을 받는 고강도 원형강관의 T형 접합의 면내 휨모멘트 내력 (In-plane Bending Moment Capacity of T-Joints in the Circular Hollow Section of New High Strength Steel Subjected to Cyclic Loadings)

  • 이성주;김주우;김상섭;이명재;양재근
    • 한국강구조학회 논문집
    • /
    • 제23권2호
    • /
    • pp.169-177
    • /
    • 2011
  • 본 논문은 반복하중을 받는 고강도강 원형강관의 T형 접합부의 면내 휨모멘트 내력에 대해 체계적으로 수행된 유한요소 해석으로부터 얻은 결과를 제시하고 있다. 용접된 원형강관의 T형 접합부의 회전강성 및 이에 따른 파괴모드를 분석하기 위하여 T형 접합부의 3차원 비선형 유한요소모델을 이용하였다. 주관과 지관의 세장비, 주관과 지관의 지름비와 같은 기하학적 파라미터 및 항복비 등에 따른 T형 접합부의 다양한 구조적 거동을 제시하였으며, 또한 주관의 압축응력의 크기에 따른 T형 접합부의 극한 면내 휨모멘트 내력의 변화를 분석하였다.

압축과 휨을 동시에 받는 강관 T조인트 극한강도 상호작용 (Ultimate Strength Interaction of Steel Tubular T-Joint Subjected to Concurrent Action of Compression and Bending)

  • 김경식
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.298-303
    • /
    • 2016
  • 수직 및 수평의 원형단면 강관으로 구성된 공간프레임 타워는 강재량을 줄이면서도 풍하중의 영향을 완화시킬 수 있는 장점으로 다양한 목적으로 널리 적용되고 있다. 이러한 공간프레임 타워를 하나의 타워구조로 거동하게 하기 위해서는 수직 강관과 수평 강관의 연결부인 강관조인트의 강도 확보가 중요하다. 본 연구에서는 압축과 휨이 동시에 작용하는 강관 T조인트의 강도평가를 수행하였다. AISC, Eurocode3, ISO 19902의 3가지 강관조인트 설계기준을 검토하고, 주강관과 지강관의 세장비를 주요 매개변수로 한 비선형 유한요소해석을 통하여 축력과 모멘트에 대한 극한강도 상호작용을 설계식으로 제안하였다.

Fatigue Fracture Behaviour of Hollow Section Joints

  • Lichun Bian;Lim, Jae-Kyoo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2001년도 추계학술발표대회 개요집
    • /
    • pp.281-284
    • /
    • 2001
  • Fatigue behaviour of eight different hollow section T-joints was investigated experimentally using scaled steel models. The joints had circular brace members and rectangular chords (CRHS). Hot spot stresses and the stress concentration factors (SCFs) were determined experimentally. Fatigue testing was carried out under constant amplitude loading in air. The experimental SCF values for CRHS joints were found to be between those of circular-to-circular (CCHS) and rectangular-to-rectangular (RRHS) hollow section joints. The fatigue strength referred to experimental hot spot stress was in reasonably good agreement with current fatigue design codes for tubular joints.

  • PDF

원형단면 멀티기둥 풍력타워 적용 T형 강관조인트 강도 평가 (Strength Evaluation of T-type Tubular Joints for Circular Section Multi-Column Wind Towers)

  • 김경식;박현용;서동혁
    • 한국강구조학회 논문집
    • /
    • 제27권1호
    • /
    • pp.119-129
    • /
    • 2015
  • 강재량을 줄이면서도 풍하중의 영향을 완화시킬 수 있는 장점으로, 수평재로 서로 연결된 다수의 수직 원형강관으로 구성된 멀티기둥 풍력타워 시스템은 기존의 단일 실린더형 타워구조에 대한 대안으로 고려될 수 있다. 멀티기둥 타워를 하나의 타워구조로 거동하게 하기 위해서는 수직 강관과 수평 강관의 연결부인 강관조인트의 강도 확보가 중요하다. 본 연구에서는 멀티기둥에 적용될 수 있는 T 조인트의 강도평가를 수행하였다. AISC, Eurocode3, ISO 19902, CIDECT의 4가지 강관조인트 설계기준을 검토하고, 조인트에서 주강관과 지강관의 세장비에 대한 매개변수해석을 통하여 설계기준에서 제공되는 강도산정식의 타당성을 검토하였다.