• Title/Summary/Keyword: T-H-M coupling

Search Result 62, Processing Time 0.03 seconds

ICRF Wave Propagation and Absorption on KSTAR Plasma

  • Ju, M.H.;Hong, B.G.;Han, J.M.;Mau, T.K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.583-588
    • /
    • 1997
  • For the efficient current drive, the structure of ICRF wave propagation and absorption in a tokamak plasma should be first investigated. In this paper, two dimensional study on FWCD as well as ICRF minority ion heating for the KSTAR [Korea Superconducting Tok Amak Research] [1] plasma was performed using the full wave code of TORIC [2]. The ICRF wave propagation and absorption structures, the competitive power absorption between electrons and ions and the coupling of antenna/plasma are investigated.

  • PDF

The Piezoelectric and Dielectric Properties of PZT-PMN Ceramics (PZT-PMN 압전 세라믹의 압전 및 유전 특성)

  • Lee, J.S.;Lee, Y.H.;Hong, J.K.;Jeong, S.H.;Chai, H.I.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.131-134
    • /
    • 2001
  • In this paper, the piezoelectric and dielectric properties as a function of x and a in $aPbZr_xTi_{1-x}O_3-(1-a)Pb(Mn_{1/3}Nb_{2/3})O_3$ + ywt%MgO is investigated. As a results, when a is 0.95 and x is 0.505, electromechanical coupling factor$(k_p)$, permittivity${\varepsilon}_33^T/{\varepsilon}_0$, piezoelectric strain constant$(d_{33})$ and mechanical quality factor$(Q_m)$ are 58 %, 1520, 272 pC/N and 1550, respectively. From XRD analysis, when x is 0.505, it is MPB which present rhombohedral and tetragonal phase in same quantity. Also, From SEM observation, when sintering temperature is $1150^{\circ}C$, grain size is about $2\;{\mu}m$. As a results added MgO dopant in the ternary piezoelectric ceramic, when MgO content is 0.1 wt%, $k_p$ increases to 63[%].

  • PDF

Waveguide Slot Array Antenna for Heliborne MTD Radar (헬리콥터 탑재 MTD 레이다용 도파관 슬롯배열 안테나)

  • Kim Dong-Seok;Han In-Hee;Gwak Young-Gil;Shin Keun-Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.139-142
    • /
    • 2004
  • X-band Waveguide slot way antenna is developed for heliborne MTD radar applications. The antenna is composed of multi-layer waveguide structures. Each of them has it's own functions, such as, radiation, power/phase distribution, coupling, etc. Broad-wall offset slots are used for radiators, inclined slots on broad-wall for power distribution to radiating(branch) waveguide, some kind of coaxial probe structures for in-phase coupling and H-plane T-junction power dividers. Antenna is realized by precision machining and careful assembly. It is tested and measured by 3m${\times}$l.7m planar near-field probe, which is set-up in MTG. Far-field calculations have good agreement in tolerable bounds. Special but necessary process such as brazing, will increase the accuracy and performance. Results show promising possibilities of future applications for real systems.

  • PDF

Synthesis of Dendritic Polystyrene-block-Linear Poly(t-butyl acrylate) Copolymers by an Amide Coupling (아미드 커플링을 통한 덴드리틱 Polystyrene-Block-Linear Poly(t-butyl acrylate) 공중합체의 합성)

  • Song, Jie;Cho, Byoung-Ki
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.158-163
    • /
    • 2009
  • In this study, we synthesized a series of dendritic polystyrene-b-linear poly (t-butyl acrylate) copolymers with well-defined molecular architectures. The hydroxyl group located at the focal point of the second generation dendron bearing polystyrene ($M_n$ = 1000 g/mol) peripheries was converted into amine group via the following stepwise reactions: 1) tosylatoin, 2) azidation, and 3) reduction. On the other hand, the linear poly (t-butyl acrylate)s were prepared by an atom transfer radical polymerization (ATRP) of t-butyl acrylate where benzyl 2-bromopropanoate and Cu(I)Br/PMDETA were used as initiator and catalyst, respectively. To convert the end group of prepared poly (t-butyl acrylate) s into carboxylic acid, a debenzylation was performed using Pd/C catalyst under $H_2$ atmosphere. In the final step, dendritic-linear block copolymers were obtained through a simple amide coupling reaction mediated by 4-(dimethylamino) pyridine(DMAP) and N,N'-diisopropylcarbodiimide(DIPC). The resulting diblock copolymers were shown to have well-defined molecular weights and narrow molecular weight distributions as supported by $^1H$-NMR spectroscopy and gel permeation chromatography(GPC).

Development of Thermal-Hydraulic-Mechanical Coupled Numerical Analysis Code for Complex Behavior in Jointed Rock Mass Based on Fracture Mechanics (균열 암반의 복합거동해석을 위한 열-수리-역학적으로 연계된 파괴역학 수치해석코드 개발)

  • Kim, Hyung-Mok;Park, Eui-Seob;Shen, Baotang;Synn, Joong-Ho;Kim, Taek-Kon;Lee, Seong-Cheol;Ko, Tae-Young;Lee, Hee-Suk;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.66-81
    • /
    • 2011
  • In this study, it was aimed to develop a thermal-hydraulic-mechanical coupled fracture mechanics code that models a fracture initiation, propagation and failure of underground rock mass due to thermal and hydraulic loadings. The development was based on a 2D FRACOD (Shen & Stephasson, 1993), and newly developed T-M and H-M coupled analysis modules were implemented into it. T-M coupling in FRACOD employed a fictitious heat source and time-marching method, and explicit iteration method was used in H-M coupling. The validity of developed coupled modules was verified by the comparison with the analytical result, and its applicability to the fracture initiation and propagation behavior due to temperature changes and hydraulic fracturing was confirmed by test simulations.

Preparation and Magnetic Properties of MnBi Alloy and its Hybridization with NdFeB

  • Truong, Nguyen Xuan;Vuong, Nguyen Van
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.336-341
    • /
    • 2015
  • MnBi alloys were fabricated by arc melting and annealing at 573 K. The heat treatment enhanced the content of the low-temperature phase (LTP) of MnBi up to 83 wt%. The Bi-excess assisted LTP MnBi alloys were used in the hybridization with the Nd-Fe-B commercial Magnequench ribbons to form the hybrid magnets (100-x)NdFeB/xMnBi, x = 20, 30, 40, 50, and 80 wt%. The as-milled powder mixtures of Nd-Fe-B and MnBi were aligned in a magnetic field of 18 kOe and warm-compacted to anisotropic and dense bulk magnets at 573 K by 2,000 psi for 10 min. The magnetic ordering of two hard phase components strengthened by the exchange coupling enhanced the Curie temperature ($T_c$) of the magnet in comparison to that of the powder mixture sample. The prepared hybrid magnets were highly anisotropic with the ratio $M_r/M_s$ > 0.8. The exchange coupling was high, and the coercivity $_iH_c$ of the magnets was ~11-13 kOe. The maximum value of the energy product $(BH)_{max}$ was 8.4 MGOe for the magnet with x = 30%. The preparation of MnBi alloys and hybrid magnets are discussed in details.

ANALYSIS OF HIGH-FIELD MAGNETIZATION PROCESS IN $Sm_{2}Fe_{17}N_{3.0}$

  • Zhao, T.S.;Jin, H.M.;Lee, J.I.;Paug, K.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.679-682
    • /
    • 1995
  • The observed high-field magnetization curves of $Sm_{2}Fe_{17}N_{3.0}$ at 4.2 K and 296 K are well reproduced by the calculation using the Sm-Fe exchange field $2\mu\textrm{B}H_{ex}\;=\;320\;K$ and two crystalline electric field parameters ${A_{0}}^{2}=\;-910\;K$ and ${A_{1}}^{0}=\;200\;K$. The calculation shows that during the magnetization process along the hard axis at 4.2 K, the Sm moment rotates toward the direction antiparallel to H when H < 110 kOe and then returns to the field direction with further increase of the field. At 296 K, the Sm moment rotates toward the direction antiparallel to H monotonously with increasing field and finally becomes antiparallel to H when $H{\geq}H_{A}=210\;kOe$. The particular magnetization process of the Sm moment can be explained by the field-induced noncollinear coupling between the spin and orbital moments of the Sm ion.

  • PDF

Exchange Coupling Field and Thermal Stability of Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 Multilayer Depending on Mn Content (Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 다층박막에서 Mn 함유량에 의존하는 교환결합력과 열적안정성)

  • Kim, B.K.;Lee, J.Y.;Kim, S.S.;Hwang, D.G.;Lee, S.S.;Hwang, J.Y.;Kim, M.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.187-192
    • /
    • 2003
  • The magnetic and thermal properties of NiFe/[IrMn-Mn]/CoFe with Mn additions have been studied. As-deposited CoFe pinned layers with [IrMn-Mn]layer had dominantly larger exchange biasing field ( $H_{ex}$) and blocking temperature ( $T_{b}$) than those with pure I $r_{22}$M $n_{78}$ used. The $H_{ex}$ and $T_{b}$ improved with 76.8-78.1 vol% Mn, but those of the NiFe/IrMn/CoFe dropped considerably with more addition of 0.6 vol % Mn. The average x-ray diffraction peak ratios of fcc [(111)CoFe, NiFe]/(111)IrM $n_3$ textures for the Mn inserted total vol of 75.5, 77.5, and 79.3% were about 1.4, 0.8, and 0.6, respectively. For the sample without Mn inserted layer, the $H_{ex}$ between IrMn and CoFe layers was almost zero, but it increased to 100 Oe after annealing of 250 $^{\circ}C$. For as-grown two multilayers samples with ultra-thin Mn layers of 77.5 and 78.7 vol %, the $H_{ex}$s were 259 and 150 Oe, respectively. In case of IrMn with 77.5 vol% Mn, the $H_{ex}$ was increased up to 475 Oe at 350 $^{\circ}C$ but decreased to 200 Oe at 450 $^{\circ}C$, respectively. The magnetic properties and thermal stabilities of NiFe/[IrMn-Mn]/CoFe multilayer were enhanced with Mn additions. In applications where higher $H_{ex}$ and $T_{b}$ are required, proper contents of Mn can be used. be used. used.

Dielectric Properties of Plasma Polymerized ppMMA Thin Film (플라즈마 증합법으로 증착된 ppMMA 박막의 유전특성)

  • Lim, J.S.;Shin, P.K.;Nam, K.Y.;Kim, J.S.;Hwang, M.H.;Kim, J.T.;Lee, Y.H.;Kang, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1408-1409
    • /
    • 2006
  • In this paper, poly methyl methacrylate thin films were deposited on a ITO glass substrate using a plasma polymerization technique. In order to investigate the influence of the plasma coupling method and plasma conditions on the plasma polymerized poly methyl methacrylate (ppMMA) thin film properties, inductively coupled (ICP) and capacitively coupled plasma (CCP) were used to generate the plasma and the plasma parameters were varied. Molecular structures of the ppMMAs were investigated using a Fourier Transform Infrared (FT-IR) spectroscopy. Dielectric constants of the ppMMA thin films were investigated using a impedance analyzer (HP4192A, LF Impedance Analyzer). Current-Voltage (I-V) characteristics of the ppMMA thin films were investigated using a source measurement unit (SMU: Keithley 2400). Relationship between the plasma coupling technique/process parameter and ppMMA thin films properties were investigated.

  • PDF

Bias Voltage Dependence of Magnetic Tunnel Junctions Comprising Double Barriers and CoFe/NiFeSiB/CoFe Free Layer (CoFe/NiFeSiB/CoFe 자유층을 갖는 이중장벽 자기터널접합의 바이어스전압 의존특성)

  • Lee, S.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.120-123
    • /
    • 2007
  • The typical double-barrier magnetic tunnel junction (DMTJ) structure examined in this paper consists of a Ta 45/Ru 9.5/IrMn 10/CoFe7/$AlO_x$/free layer/AlO/CoFe 7/IrMn 10/Ru 60 (nm). The free layer consists of an $Ni_{16}Fe_{62}Si_8B_{14}$ 7 nm, $Co_{90}Fe_{10}$ (fcc) 7 nm, or CoFe $t_1$/NiFeSiB $t_2$/CoFe $t_1$ layer in which the thicknesses $t_1$ and $t_2$ are varied. The DMTJ with an NiFeSiB-free layer had a tunneling magnetoresistance (TMR) of 28%, an area-resistance product (RA) of $86\;k{\Omega}{\mu}m^2$, a coercivity ($H_c$) of 11 Oe, and an interlayer coupling field ($H_i$) of 20 Oe. To improve the TMR ratio and RA, a DMTJ comprising an amorphous NiFeSiB layer that could partially substitute for the CoFe free layer was investigated. This hybrid DMTJ had a TMR of 30%, an RA of $68\;k{\Omega}{\mu}m^2$, and a of 11 Oe, but an increased of 37 Oe. We confirmed by atomic force microscopy and transmission electron microscopy that increased as the thickness of NiFeSiB decreased. When the amorphous NiFeSiB layer was thick, it was effective in retarding the columnar growth which usually induces a wavy interface. However, if the NiFeSiB layer was thin, the roughness was increased and became large because of the magnetostatic $N{\acute{e}}el$ coupling.