Browse > Article
http://dx.doi.org/10.4283/JKMS.2003.13.5.187

Exchange Coupling Field and Thermal Stability of Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 Multilayer Depending on Mn Content  

Kim, B.K. (컴퓨터전자물리학과, 상지대학교)
Lee, J.Y. (컴퓨터전자물리학과, 상지대학교)
Kim, S.S. (컴퓨터전자물리학과, 상지대학교)
Hwang, D.G. (컴퓨터전자물리학과, 상지대학교)
Lee, S.S. (컴퓨터전자물리학과, 상지대학교)
Hwang, J.Y. (물리학과, 숙명여자대학교)
Kim, M.Y. (물리학과, 숙명여자대학교)
Rhee, J.R. (물리학과, 숙명여자대학교)
Abstract
The magnetic and thermal properties of NiFe/[IrMn-Mn]/CoFe with Mn additions have been studied. As-deposited CoFe pinned layers with [IrMn-Mn]layer had dominantly larger exchange biasing field ( $H_{ex}$) and blocking temperature ( $T_{b}$) than those with pure I $r_{22}$M $n_{78}$ used. The $H_{ex}$ and $T_{b}$ improved with 76.8-78.1 vol% Mn, but those of the NiFe/IrMn/CoFe dropped considerably with more addition of 0.6 vol % Mn. The average x-ray diffraction peak ratios of fcc [(111)CoFe, NiFe]/(111)IrM $n_3$ textures for the Mn inserted total vol of 75.5, 77.5, and 79.3% were about 1.4, 0.8, and 0.6, respectively. For the sample without Mn inserted layer, the $H_{ex}$ between IrMn and CoFe layers was almost zero, but it increased to 100 Oe after annealing of 250 $^{\circ}C$. For as-grown two multilayers samples with ultra-thin Mn layers of 77.5 and 78.7 vol %, the $H_{ex}$s were 259 and 150 Oe, respectively. In case of IrMn with 77.5 vol% Mn, the $H_{ex}$ was increased up to 475 Oe at 350 $^{\circ}C$ but decreased to 200 Oe at 450 $^{\circ}C$, respectively. The magnetic properties and thermal stabilities of NiFe/[IrMn-Mn]/CoFe multilayer were enhanced with Mn additions. In applications where higher $H_{ex}$ and $T_{b}$ are required, proper contents of Mn can be used. be used. used.
Keywords
vol% Mn; NiFe/[IrMn-Mn]/CoFe multilayer; exchange coupling field; Mn content; vol% Mn; thermal stability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 /
[ Ion Beam Etch Rate;Sputter Yield ] / Commonwealth Science Corporation`s Catalog, CSC Job Number: 5622
2 /
[ K.Y.Kim;S.H.Jang;K.H.Shin;H.J.Kim;T.Kang ] / J. Appl. Phys.   DOI   ScienceOn
3 /
[ B.Dai;J.W.Cai;W.Y.Lai;F.Shen;Z.Zhang ] / Appl. Phys. Lett.   DOI   ScienceOn
4 /
[ W.F.Egelhoff Jr.;P.J.Chen;C.J.Powell;D.Parks;G.Serpa;R.D.McMichael;D.Martien;A.E.Berkowitz ] / J. Vac. Sci. Technol.
5 /
[ C.S.Yoon;J.H.Lee;C.K.Kim ] / J. Appl. Phys.   DOI   ScienceOn
6 /
[ M.J.Carey;A.Kellock;L.Baril;J.R.Childress;T.Le;T.Thompson;B.A.Gurney ] / Appl. Phys. Lett.   DOI   ScienceOn
7 /
[ S.S.Lee;D.G.Hwang;C.M.Park ] / J. Mag. Mag. Mater.
8 /
[ K.Li;Y.Wu;J.Qiu;G.Han;Z.Guo;H.Xie;T.Chong ] / Appl. Phys. Lett.   DOI   ScienceOn
9 /
[ J.H.Lee;S.J.Kim;C.S.Yoon;C.K.Kim;B.G.Park;T.D.Lee ] / J. Appl. Phys.   DOI   ScienceOn
10 /
[ J.C.Eckert;N.P.Stem;D.S.Snowden;P.D.Sparks ] / J. Appl. Phys.   DOI   ScienceOn
11 /
[ J.Langer;R.Mattheis;B.Ocker;W.Maaβ;S.Senz;D.Hesse;K.Kruaβ lich ] / J. Appl. Phys.   DOI   ScienceOn
12 /
[ B.K.Kim;J.Y.Lee;S.H.Ham;S.S.Lee;D.G.Hwang ] / J. Kor. Mag. Soc.   DOI   ScienceOn
13 /
[ B.K.Kim;J.H.Kim;D.G.Hwang;S.S.Lee ] / J. Kor. Mag. Soc.   DOI   ScienceOn
14 /
[ S.W.Kim;J.H.Kim;B.K.Kim;J.K.Kim;J.R.Rhee;S.S.Lee;D.G.Hwang ] / J. Appl. Phys.   DOI   ScienceOn
15 /
[ S.H.Jang;T.Kang;H.J.Kim;K.Y.Kim ] / Appl. Phys. Lett.   DOI   ScienceOn
16 /
[ H.R.Kaufman;J.J.Cuomo;J.M.E.Harper ] / J. Vac. Sci. Tech.   DOI