• Title/Summary/Keyword: T cell receptor beta

Search Result 103, Processing Time 0.025 seconds

Regulation of the plasminogen activator activity and inflammatory environment via transforming growth factor-beta regulation of sperm in porcine uterine epithelial cells

  • Kim, Su-jin;Cheong, Hee-Tae;Park, Choon-keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.297-306
    • /
    • 2020
  • The aims of the present study were to confirm that regulation of the PA and environment via TGF-β regulation of sperm by Percoll-separated in porcine uterine epithelial cells. And, it was performed to identify the cytokines (TGF-β1, 2 and 3, TGF-β receptor1 and 2; interleukin, IL-6, IL-8) and PA-related genes (urokinase-PA, uPA; tissue-PA, tPA; PA inhibitor, PAI; uPA-receptor, uPAR) by spermatozoa. The experiment used porcine uterus epithelial cells (pUECs) and uterine tissue epithelial cells, Boar sperm were separated by discontinuous Percoll density gradient (45/90%), and tissues were co-incubated with spermatozoa, followed by real-time PCR. PA activity was measured of sperm by discontinuous Percoll density gradient (45/90%) for 24 hours. To measure viability and acrosome damage of sperm double stained propidium iodide (PI) and SYBR-14 or FITC-PNA were used. In results, binding ratio of Percoll-separated sperm was found no differences, but sperms isolated from 90% Percoll layer reduced PA activity (p < 0.05). when co-cultured sperm selected Percoll in porcine uterus tissues epithelial cells, 90% layer sperm increased TGF-β R1, contrastively tPA and PAI-1 in comparison with control (p < 0.05). 45% sperm was decreased the expression of uPA (p < 0.05). TGF-β decreased PA activity in the supernatant collected from pUECs (p < 0.05). Especially, The group including uPA, PAI-1 were induce sperm intact, while it was reduced in sperm damage when compared to control (p < 0.05). Also, there was no significant difference group of tPA and tPA+I in the dead sperm and acrosome damage compared to control. The expression of tPA and PAI showed a common response. Percoll-separated spermatozoa in 90% layer reduced tPA and IL-related gene mRNA expression. Thus, Percoll-sparated sperm in 90% layer show that it can suppress inflammation through increased expression of TGF-β and downregulation of PA and IL in epithelial cells compared to 45% layer Percoll.

A Combination Strategy for Construction of Peptide-β2m-H-2Kb Single Chain with Overlap Extension PCR and One-Step Cloning

  • Xu, Tao;Li, Xiaoe;Wu, You;Shahzad, Khawar Ali;Wang, Wei;Zhang, Lei;Shen, Chuanlai
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2184-2191
    • /
    • 2016
  • The time-consuming and high-cost preparation of soluble peptide-major histocompatibility complexes (pMHC) currently limits their wide uses in monitoring antigen-specific T cells. The single-chain trimer (SCT) of peptide-${\beta}2m$-MHC class I heavy chain was developed as an alternative strategy, but its gene fusion is hindered in many cases owing to the incompatibility between the multiple restriction enzymes and the restriction endonuclease sites of plasmid vectors. In this study, overlap extension PCR and one-step cloning were adopted to overcome this restriction. The SCT gene of the $OVA_{257-264}$ peptide-$(GS_4)_3-{\beta}2m-(GS_4)_4-H-2K^b$ heavy chain was constructed and inserted into plasmid pET28a by overlap extension PCR and one-step cloning, without the requirement of restriction enzymes. The SCT protein was expressed in Escherichia coli, and then purified and refolded. The resulting $H-2K^b/OVA_{257-264}$ complex showed the correct structural conformation and capability to bind with $OVA_{257-264}$-specific T-cell receptor. The overlap extension PCR and one-step cloning ensure the construction of single-chain MHC class I molecules associated with random epitopes, and will facilitate the preparation of soluble pMHC multimers.

Beyond Clot Dissolution; Role of Tissue Plasminogen Activator in Central Nervous System

  • Kim, Ji-Woon;Lee, Soon-Young;Joo, So-Hyun;Song, Mi-Ryoung;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.16-26
    • /
    • 2007
  • Tissue plasminogen activator (tPA) is a serine protease catalyzing the proteolytic conversion of plasminogen into plasmin, which is involved in thrombolysis. During last two decades, the role of tPA in brain physiology and pathology has been extensively investigated. tPA is expressed in brain regions such as cortex, hippocampus, amygdala and cerebellum, and major neural cell types such as neuron, astrocyte, microglia and endothelial cells express tPA in basal status. After strong neural stimulation such as seizure, tPA behaves as an immediate early gene increasing the expression level within an hour. Neural activity and/or postsynaptic stimulation increased the release of tPA from axonal terminal and presumably from dendritic compartment. Neuronal tPA regulates plastic changes in neuronal function and structure mediating key neurologic processes such as visual cortex plasticity, seizure spreading, cerebellar motor learning, long term potentiation and addictive or withdrawal behavior after morphine discontinuance. In addition to these physiological roles, tPA mediates excitotoxicity leading to the neurodegeneration in several pathological conditions including ischemic stroke. Increasing amount of evidence also suggest the role of tPA in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis even though beneficial effects was also reported in case of Alzheimer's disease based on the observation of tPA-induced degradation of $A{\beta}$ aggregates. Target proteins of tPA action include extracellular matrix protein laminin, proteoglycans and NMDA receptor. In addition, several receptors (or binding partners) for tPA has been reported such as low-density lipoprotein receptor-related protein (LRP) and annexin II, even though intracellular signaling mechanism underlying tPA action is not clear yet. Interestingly, the action of tPA comprises both proteolytic and non-proteolytic mechanism. In case of microglial activation, tPA showed non-proteolytic cytokine-like function. The search for exact target proteins and receptor molecules for tPA along with the identification of the mechanism regulating tPA expression and release in the nervous system will enable us to better understand several key neurological processes like teaming and memory as well as to obtain therapeutic tools against neurodegenerative diseases.

Antiobesity effects of the water-soluble fraction of the ethanol extract of Smilax china L. leaf in 3T3-L1 adipocytes

  • Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Dae Jung;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.606-612
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Several medicinal properties of Smilax china L. have been studied including antioxidant, anti-inflammatory, and anti-cancer effects. However, the antiobesity activity and mechanism by which the water-soluble fraction of this plant mediates its effects are not clear. In the present study, we investigated the lipolytic actions of the water-soluble fraction of Smilax china L. leaf ethanol extract (wsSCLE) in 3T3-L1 adipocytes. MATERIALS/METHODS: The wsSCLE was identified by measuring the total polyphenol and flavonoid content. The wsSCLE was evaluated for its effects on cell viability, lipid accumulation, glycerol, and cyclic adenosine monophosphate (cAMP) contents. In addition, western blot analysis was used to evaluate the effects on protein kinase A (PKA), PKA substrates (PKAs), and hormone-sensitive lipase (HSL). For the lipid accumulation assay, 3T3-L1 adipocytes were treated with different doses of wsSCLE for 9 days starting 2 days post-confluence. In other cell experiments, mature 3T3-L1 adipocytes were treated for 24 h with wsSCLE. RESULTS: Results showed that treatment with wsSCLE at 0.05, 0.1, and 0.25 mg/mL had no effect on cell morphology and viability. Without evidence of toxicity, wsSCLE treatment decreased lipid accumulation compared with the untreated adipocyte controls as shown by the lower absorbance of Oil Red O stain. The wsSCLE significantly induced glycerol release and cAMP production in mature 3T3-L1 cells. Furthermore, protein levels of phosphorylated PKA, PKAs, and HSL significantly increased following wsSCLE treatment. CONCLUSION: These results demonstrate that the potential antiobesity activity of wsSCLE is at least in part due to the stimulation of cAMP-PKA-HSL signaling. In addition, the wsSCLE-stimulated lipolysis induced by the signaling is mediated via activation of the ${\beta}$-adrenergic receptor.

High-Level Constitutive Expression of Mouse CD4 and CD4/CD8${\alpha}$ Hybrid Molecules in Transgenic Mice

  • Kim, Joongkyu;Choi, Young-Il;Park, Sang-D;Seong, Rho-H
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.657-663
    • /
    • 1997
  • The CD4 and CDS coreceptors, in conjunction with the T cell receptor (TCR) , make important contributions to the differentiation of thymocytes. They have been shown to be involved in the clonal deletion and positive selection processes during T cell development in thymus. To further analyze the role of CD4 and CDS proteins during T cell differentiation, we have generated transgenic mice constitutively expressing high levels of a native CD4 and a CD4{CDSa hybrid protein. The hybrid protein is composed of CD4 extracellular domain linked to the CD8a transmembrane region and cytoplasmic tail. The transgenes were driven by human beta-actin promoter, and therefore, they were expressed in all tissues examined including thymus, spleen, and lymph nodes. The resulting CD4 and CD4{CD8${\alpha}$transgenic mice were found to express the CD4 and CD4{CD8${\alpha}$ respectively, in developing thymocytes and peripheral T cells. The expression levels of transgenic proteins were 5-10 times higher than that of endogenous CD4 in thymus. However, total surface CD4 expression (CD4 or CD4{CD8${\alpha}$ transgenic protein plus endogenous CD4) of the transgenic mice were main. tained at similar levels compared to control littermates. Surface CD4 expression on CDS T cells, however, was significantly lower than that on cells expressing endogenous CD4. These results suggest that a total avidity between developing thymocytes and thymic stromal cells is impor. tant for differentiation of thymocytes.

  • PDF

Differential Effect of MyD88 Signal in Donor T Cells on Graft-versus-Leukemia Effect and Graft-versus-Host Disease after Experimental Allogeneic Stem Cell Transplantation

  • Lim, Ji-Young;Ryu, Da-Bin;Lee, Sung-Eun;Park, Gyeongsin;Choi, Eun Young;Min, Chang-Ki
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.966-974
    • /
    • 2015
  • Despite the presence of toll like receptor (TLR) expression in conventional $TCR{\alpha}{\beta}$ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 ($H-2^b$) ${\rightarrow}$ B6D2F1 ($H-2^{b/d}$), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type ($H-2^d$) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-${\gamma}$ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-${\gamma}$ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT.

Silybin Synergizes with Wnt3a in Activation of the Wnt/${\beta}$-catenin Signaling Pathway through Stabilization of Intracellular ${\beta}$-Catenin Protein (Silybin에 의한 Wnt/${\beta}$-catenin 신호전달체계의 활성화)

  • Kim, Tae-Yeoun;Oh, Sang-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • The Wnt/${\beta}$-catenin signaling pathway regulates diverse developmental processes and adult tissue homeostasis. Inappropriate regulation of this pathway has been associated with human diseases, such as cancers, osteoporosis, and Alzheimer's disease. Using a cell-based chemical screening with natural compounds, we discovered silybin, a plant flavonoid isolated from the Silybum marianum, which activated the Wnt/${\beta}$-catenin signaling pathway in a synergy with Wnt3a-conditioned medium (Wnt3a-CM). In the presence of Wnt3a-CM, silybin up-regulated ${\beta}$-catenin response transcription (CRT) in HEK293-FL reporter cells and 3T3-L1 preadipocytes through stabilization of intracellular ${\beta}$-catenin protein. Silybin and Wnt3a-CM synergistically reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated $receptor{\gamma}$ ($PPAR{\gamma}$) and CAATT enhancer-binding protein ${\alpha}$ (C/$EBP{\alpha}$) in 3T3-L1 preadipocytes, accompanied by the activation of Wnt/${\beta}$-catenin signaling pathway. Taken together, our findings indicate that silybin is a small-molecule synergist of the Wnt/${\beta}$-catenin signaling pathway and can be used as a controllable reagent for investigating biological processes that involve the Wnt/${\beta}$-catenin signaling pathway.

Tmp21, a novel MHC-I interacting protein, preferentially binds to β2-microglobulin-free MHC-I heavy chains

  • Jun, Young-Soo;Ahn, Kwang-Seog
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.369-374
    • /
    • 2011
  • MHC-I molecules play a critical role in immune surveillance against viruses by presenting peptides to cytotoxic T lymphocytes. Although the mechanisms by which MHC-I molecules assemble and acquire peptides in the ER are well characterized, how MHC-I molecules traffic to the cell surface remains poorly understood. To identify novel proteins that regulate the intracellular transport of MHC-I molecules, MHC-I-interacting proteins were isolated by affinity purification, and their identity was determined by mass spectrometry. Among the identified MHC-I-associated proteins was Tmp21, the human ortholog of yeast Emp24p, which mediates the ER-Golgi trafficking of a subset of proteins. Here, we show that Tmp21 binds to human classical and non-classical MHC-I molecules. The Tmp21-MHC-I complex lacks ${\beta}_2$-microglobulin, and the number of the complexes is increased when free MHC-I heavy chains are more abundant. Taken together, these results suggest that Tmp21 is a novel protein that preferentially binds to ${\beta}_2$-microglobulin-free MHC-I heavy chains.

Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptor by Cadmium in RAW264.7 Macrophages

  • Park, Se-Jeong;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.187-192
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens. The stimulation of TLRs by microbial components triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-$\beta$ (TRIF)-dependent downstream signaling pathways. TLR/MyD88 signaling pathway induces the activation of nuclear factor-kappa B (NF-${\kappa}B$) and the expression of inflammatory cytokine genes, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-12, and IL-$1{\beta}$. On the other hand, TLR/TRIF signaling pathway induces the delayed-activation of NF-${\kappa}B$ and interferon regulatory factor 3 (IRF3), and the expression of type I interferons (IFNs) and IFN-inducible genes. The divalent heavy metal cadmium (Cd) is clearly toxic to most mammalian organ systems, especially the immune system. Yet, the underlying toxic mechanism(s) remain unclear. Cd inhibits the MyD88-dependent pathway by ceasing the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether Cd inhibits the TRIF-dependent pathway. Presently, Cd inhibited NF-${\kappa}B$ and IRF3 activation induced by lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid. Cd inhibited LPS-induced IRF3 phosphorylation and IFN-inducible genes such as interferon inducible protein-10 and regulated on activation normal T-cell expressed and secreted (RANTES). These results suggest that Cd can modulate TRIF-dependent signaling pathways of TLRs.

No Association between Copy Number Variation of the TCRB Gene and the Risk of Autism Spectrum Disorder in the Korean Population

  • Yang, So-Young;Yim, Seon-Hee;Hu, Hae-Jin;Kim, Soon-Ae;Yoo, Hee-Jeong;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.8 no.2
    • /
    • pp.76-80
    • /
    • 2010
  • Although autism spectrum disorder (ASD) has been thought to have a substantial genetic background, major contributing genes have yet to be identified or successfully replicated. Immunological dysfunction has been suggested to be associated with ASD, and T cell-mediated immunity was considered important for the development of ASD. In this study, we analyzed 163 ASD subjects and 97 normal controls by genomic quantitative PCR to evaluate the association between the copy number variation of the 7q34 locus, harboring the TCRB gene, and ASDs. As a result, there was no significant difference of the frequency distribution of TCRB copy numbers between ASD cases and normal controls. TCRB gene copy numbers ranged from 0 to 5 copies, and the frequency distribution of each copy number was similar between the two groups. The proportion of the individuals with <2 copies of TCRB was 52.8% (86/163) in ASD cases and 57.1% (52/91) in the control group (p=0.44). The proportion of individuals with >2 copies of TCRB was 11.7% (19/163) in ASD cases and 12.1% (11/91) in the control group (p=0.68). After the effects of sex were adjusted by logistic regression, ORs for individuals with <2 copies or >2 copies showed no significant difference compared with the diploid copy number as reference (n=2). Although we could not see the positive association, our results will be valuable information for mining ASD-associated genes and for exploring the role of T cell immunity further in the pathogenesis of ASD.