• Title/Summary/Keyword: T/C(Transfer Crane)

Search Result 3, Processing Time 0.018 seconds

A Study on Optimized Decision Model for Transfer Crane Operation in Container Terminal (컨테이너터미널 트랜스퍼 크레인의 배정 및 이동경로 최적화 모델)

  • Shin, Jeong-Hoon;Yu, Song-Jin;Chang, Myung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.465-471
    • /
    • 2008
  • As the excessive competition between container terminals has been deepening, not only productivity, but also cost economic of the terminals has been raised. With regard to this, the competitiveness of the terminals is limited because of inefficiency operation of transfer crane(T/C) which needs large amount of energy consumption. Therefore, it is possible that the improvement in the T/C operation leads to saving cost for resources and energy as well as increasing the productivity of the terminals. This study provides 'the K-Means Clustering based Optimized Decision Model for Transfer Crane Operation', referring to 'RFID & RTLS based Port Logistics Initiative' of Ministry of Land, Transportation and Maritime Affairs and estimates the efficiency through simulating.

Wireless Communication System for T/C based on DSRC (DSRC 기반의 T/C 무선통신 시스템 개발)

  • 성창우;강대성
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.313-319
    • /
    • 2000
  • In this paper, we proposed the model of wireless communication for ACTS using DSRC and the DSRC system for T/C. The proposed wireless communication model is how to join with DSRC and other wireless communication in port. The DSRC system for T/C is the first application to the unit of port Facilities Automation on stacking area. The DSRC system is communicated between OBE and RSE using 5.8Hz ISM band frequency. The previous works of DSRC applications are gate automation. In these cases, the road trackers are difficult to obtain information of the port in the stacking area. So we used the DSRC for the wireless communication for the port Facilities Automation. Using DSRC, the load trackers obtain more information in the port and contacts to ITS on back-roads of port. The proposed communication system is serviced to reelection of port statistics.

  • PDF

On the Analysis of Transportation System in Mokpo Port (목포항 운송시스템의 분석에 관한 연구)

  • Nam, M.U.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.321-337
    • /
    • 1997
  • Rapid change in the technological environment of marine transportation and the development of the ocean shipping industry have fostered a revolution in the port system. This in turn has caused major changes in the function and use of port in Korea. Aside from this. Mokpo Port, however continues to decline, because the existing port facilities and related subsystem are already obsolete with no chance of regaining operational effectiveness and treatment for proper implementation. Although a few studies have been done on the Mokpo Port, has not been found, any reseach for the analytical approach to the transportation system of it. This paper aims to make an extensive analysis of the physical distribution system in Mokpo Port focusing on the coordination of subsystems such as navigational aids system, quay handling and transfer system, storage system and inland transport system. The base of introduced simulation tool here is the queueing theory. The overall findings are as follows; 1. Among those vessels called at Mokpo Port in 1994, the average size of oceangoing vessels is 4,922.1 G/T, and the domestic is 317.8 G/T. The average arrival interval and service time of the domestic vessels are 6.0 hours and 24.1 hours respectively marking the berth occupation rate over 100%. Those for oceangoing vessels are 34.5 hours, 120.0 hours and 37.2%. In order to maintainin the berth occupation rate to 70% the capacity considering the 1994 of domestic piers must be extended to 145% and oceangoing vessels must be increased to 165% year called. 2. The capacity of approaching channel is enough to handle the total traffic volume. 3. Tugs are sufficiently being provided to handle all ships requiring their services 4. The capacity of storage and inland transportation systems are sufficient to handle the throughput and the yard stroage utilization rate of No.1 $\cdots$ No.5 is 4.5% and No.6 1S 30% of 1993's. 5. The utilization rate of LLc(Level Looping Crane) and PNT(PNeumaTic) are 2.7% and 18.8%, respectively. Practical solution and proposal for improvement of Transportation System in Mokpo Port are as follows; 1. To avoid the congestion in domestic pier introduction of a new port operation system is necessary allowing the domestic vessel to use the oceangoing pier. 2. To establish the port management information system to improve the efficiency of port operation. 3. To build a new storage system for high valued cargos including modernization of the present storage and handling system. 4. To insure the safety of navigation in approaching channel, The Vessel Traffic System including separation scheme is introduced. 5. To interest enormously on public relation to ship owner's association, shippers and consignees by showing that they can save cost and ship turnaround time in order to promote the call to Mokpo Port. At last, to be strategically change the function of Mokpo Port to the Leisure, Fishing & Ferry as well as Maritime port.

  • PDF