• Title/Summary/Keyword: Systemic Hypersensitive Reaction

Search Result 8, Processing Time 0.028 seconds

Systemic Immediate Hypersensitive Reactions after Treatment with Sweet Bee Venom: A Case Report

  • Jo, NaYoung;Roh, JeongDu
    • Journal of Pharmacopuncture
    • /
    • v.18 no.4
    • /
    • pp.59-62
    • /
    • 2015
  • Objectives: A previous study showed that bee venom (BV) could cause anaphylaxis or other hypersensitivity reactions. Although hypersensitivity reactions due to sweet bee venom (SBV) have been reported, SBV has been reported to be associated with significantly reduced sensitization compared to BV. Although no systemic immediate hypersensitive response accompanied by abnormal vital signs has been reported with respect to SBV, we report a systemic immediate hypersensitive response that we experienced while trying to use SBV clinically. Methods: The patient had undergone BV treatment several times at other Oriental medicine clinics and had experienced no adverse reactions. She came to acupuncture & moxibustion department at Semyung university hospital of Oriental medicine (Je-cheon, Korea) complaining of facial hypoesthesia and was treated using SBV injections, her first SBV treatment. SBV, 0.05 cc, was injected at each of 8 acupoints, for a total of 0.40 cc: Jichang (ST4), Daeyeong (ST5), Hyeopgeo (ST6), Hagwan (ST7), Yepung (TE17), Imun (TE21), Cheonghoe (GB2), and Gwallyeo (SI18). Results: The patient showed systemic immediate hypersensitive reactions. The main symptoms were abdominal pain, nausea and perspiration, but common symptoms associated with hypersensitivity, such as edema, were mild. Abdominal pain was the most long-lasting symptom and was accompanied by nausea. Her body temperature decreased due to sweating. Her diastolic blood pressure could not be measured on three occasions. She remained alert, though the symptoms persisted. The following treatments were conducted in sequence; intramuscular epinephrine, 1 mg/mL, injection, intramuscular dexamethasone, 5 mg/mL, injection, intramuscular buscopan, 20 mg/mL, injection, oxygen ($O_2$) inhalation therapy, 1 L/minutes, via a nasal prong, and intravascular injection of normal saline, 1 L. After 12 hours of treatment, the symptoms had completely disappeared. Conclusion: This case shows that the use of SBV does not completely eliminate the possibility of hypersensitivity and that patients who received BV treatment before may also be sensitized to SBV. Thus, a skin test should be given prior to using SBV.

Hypersensitivity Reaction to Perioperative Drug Mistaken for Local Anesthetic Systemic Toxicity in a Patient under Brachial Plexus Block

  • Jun, Jee Young;Kim, Youn Jin;Kim, Jong Hak;Han, Jong In
    • Kosin Medical Journal
    • /
    • v.33 no.3
    • /
    • pp.468-476
    • /
    • 2018
  • Perioperative anaphylaxis, although rare, is a severe, life-threatening unexpected systemic hypersensitivity reaction. Simultaneous administration of various drugs during anesthesia, the difficulty of communicate with patients in sedation and anesthesia, and coverage of the patient with surgical drapes are considered to be factors that impede early recognition of anaphylactic reactions. It is very important to perform an intradermal skin test because antibiotics are the most common cause of perioperative anaphylaxis. We report a case of negative-intradermal skin test antibiotic anaphylaxis mistaken for local aesthetic systemic toxicity without increase of serum tryptase for confirmative diagnostic biomaker during surgery under brachial plexus block. It is not possible to exclude the danger of anaphylaxis completely, even if it is negative-intradermal skin test and normal tryptase level. Therefore, anesthesiologists should be closely monitored and treated early for antibiotics related hypersensitive reaction, like other medicines during anesthesia.

Tobamovirus Coat Protein CPCg Induces an HR-like Response in Sensitive Tobacco Plants

  • Ehrenfeld, Nicole;Canon, Paola;Stange, Claudia;Medina, Consuelo;Arce-Johnson, Patricio
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.418-427
    • /
    • 2005
  • When inoculated into sensitive tobacco Xanthi-nn plants, the crucifer and garlic-infecting Tobacco mosaic virus (TMV-Cg) induces local necrotic lesions that resemble those seen in the hypersensitive response (HR) of resistant tobacco plants. However, unlike these, tobacco Xanthi-nn plants do not become resistant to infection and the virus spreads systemically causing a severe disease characterized by necrotic lesions throughout the plant. To identify the viral protein that elicits this necrotic response, we used a set of hybrid viruses constructed by combination of TMV-Cg and the tobacco mosaic virus strain U1 (TMV-U1). In this study we present evidence that the coat protein of TMV-Cg (CPCg) is the elicitor of the necrotic response in tobacco Xanthi-nn plants. Local and systemic necrotic lesions induced by TMV-Cg and by the hybrid U1-CPCg -that carries CPCg in a TMV-U1 context- are characterized by cell death and by the presence of autoflorescent phenolic compounds and $H_2O_2$, just like the HR lesions. In addition, defense-related genes and detoxifying genes are induced in tobacco Xanthi-nn plants after TMV-Cg and U1-CPCg inoculation. We postulate that in our system, CPCg is recognized by sensitive tobacco plants that mount an incomplete defense response. We call this an HR-like since it is not enough to induce plant resistance.

Different Mechanisms of Induced Systemic Resistance and Systemic Acquired Resistance Against Colletotrichum orbiculare on the Leaves of Cucumber Plants

  • Jeun, Yong-Chull;Park, Kyung-Seok;Kim, Choong-Hoe
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • Defense mechanisms against anthracnose disease caused by Colletotrichum orbiculare on the leaf surface of cucumber plants after pre-treatment with plant growth promoting rhizobacteria(PGPR), amino salicylic acid(ASA) or C. orbiculare were compared using a fluorescence microscope. Induced systemic resistance was mediated by the pre-inoculation in the root system with PGPR strain Bacillus amylolquefaciens EXTN-1 that showed direct antifungal activity to C. gloeosporioides and C. orbiculare. Also, systemic acquired resistance was triggered by the pre-treatments on the bottom leaves with amino salicylic acid or conidial suspension of C. orbiculare. The protection values on the leaves expressing SAR were higher compared to those expressing ISR. After pre-inoculation with PGPR strains no change of the plants was found in phenotype, while necrosis or hypersensitive reaction(HR) was observed on the leaves of plants pre-treated with ASA or the pathogen. After challenge inoculation, inhibition of fungal growth was observed on the leaves expressing both ISR and SAR. HR was frequently observed at the penetration sites of both resistance-expressing leaves. Appressorium formation was dramatically reduced on the leaves of plants pre-treated with ASA, whereas EXTN-1 did not suppress the appressorium formation. ASA also more strongly inhibited the conidial germination than EXTN-1. Conversely, EXTN-1 significantly increased the frequency of callose formation at the penetration sites, but ASA did not. The defense mechanisms induced by C. orbiculare were similar to those by ASA. Based on these results it is suggested that resistance mechanisms on the leaf surface was different between on the cucumber leaves expressing ISR and SAR, resulting in the different protection values.

  • PDF

Allergic Bronchopulmonary Aspergillosis Presenting as Recurrent Mass-like Consolidation

  • Choe, Yeong Hun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.2
    • /
    • pp.133-136
    • /
    • 2015
  • Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitive disease showing various radiographic and clinical manifestations. Its clinical course has not been fully understood. Here I describe a case of a 23-year-old immunocompetent man with frequently relapsing ABPA. He was asthmatic. He visited our hospital because of a chronic cough. Laboratory examination showed eosinophilia with increased total and Aspergillus-specific IgE as well as positive skin reaction to Aspergillus fumigatus. Radiologic feature was a dense consolidation. Histology showed organizing pneumonia with eosinophilic infiltration. On the diagnosis of ABPA, he was treated with systemic steroid and itraconazole. Although treatment response was excellent, he suffered from recurrent ABPA three times thereafter in the form of fleeting mass-like consolidation.

Ascophyllum and Its Symbionts. VII. Three-way Interactions Among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) and Vertebrata lanosa (Rhodophyta)

  • Garbary, David J.;Deckert, Ron J.;Hubbard, Charlene B.
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.353-361
    • /
    • 2005
  • Ascophyllum nodosum (L.) Le Jolis has a systemic infection with the ascomycete Mycophycias ascophylli (Cotton) Kohlmeyer and Volkmann-Kohlmeyer with which it establishese a mutualistic symbiosis. In addition, A. nodosum is the host for the obligate red algal epiphyte, Vertebrata lanosa (L.) Christensen. Using light and electron microscopy we describe morphological and cytochemical changes occurring as a consequence of rhizoid penetration of V. lanosa into cortical host tissue. Rhizoids induce localized cell necrosis based on physical damage during rhizoid penetration. Host cells adjacent to the rhizoid selectively undergo a hypersensitive reaction in which they become darkly pigmented and become foci for hyphal development. Light and electron microscopy show that M. ascophylli forms dense hyphal aggregations on the surface of the V. lanosa rhizoid and extensive endophytic hyphal growths in the rhizoid wall. This is the first morphological evidence of an interaction between M. ascophylli and V. lanosa. We speculate that M. ascophylli may be interacting with V. lanosa to limit tissue damage to their shared host. In addition, the fungus provides a potential pathway for the transfer of materials (e.g., nutrients and photosynthate) between the two phototrophs.

Gene Expression Analysis in Cucumber Leaves Primed by Root Colonization of Pseudomonas chlororaphis O6 upon Challenge-inoculation with Corynespora cassiicola.

  • Kim, M.;Kim, Y. C.;B. H. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.90.1-90
    • /
    • 2003
  • Colonization of Pseudomonas chlororaphis O6, a nonpathogenic rhizobacterium, on the roots induced systemic resistance in cucumber plants against tai-get leaf spot, a foliar disease caused by Corynespora cassiicola. A cDNA library was constructed using mRNA extracted from the cucumber leaves 12 h after inoculation with C. cassiicola, which roots had been previously treated with O6. To identify the genes involved in the O6-mediated induced systemic resistance (ISR), we employed a subtractive hybridization method using mRNAs extracted from C cassiicola-inoculated cucumber leaves with and without previous O6 treatment on the plant roots. Differential screening of the cDNA library led to the isolation of 5 distinct genesencoding a GTP-binding protein, a putative senescence-associated protein, a galactinol synthase, a hypersensitive-induced reaction protein, and a putative aquaporin. Expressions of these genes are not induced by O6 colonization alone. Before challenge inoculation, no increase in the gene transcriptions could be detected in previously O6-treated and untreated plants but, upon subsequent inoculation with the pathogenic fungus, transcription levels in O6-treated plants rose significantly faster and stronger than in untreated plants. Therefore, the O6-mediated ISR may be associated with an enhanced capacity for the rapid and effective activation of cellular defense responses which becomes apparent only after challenge inoculation on the distal, untreated plant parts, as suggested by Conrath et al. (2002). This work was supported by a grant R11-2001-092-02006-0 from the Korea Science and Engineering Foundation through the Agricultural Plant Stress Research Center at Chonnam National University.

  • PDF

Ultrastructures of the Loaves of Cucumber Plane Treated with DL-3-Aminobutyric Acid at the Vascular Bundle and the Penetration Sites after Inoculation with Colletotrichum orbiculare

  • Jeun, Y.C.;Park, E.W.
    • The Plant Pathology Journal
    • /
    • v.19 no.2
    • /
    • pp.85-91
    • /
    • 2003
  • Pre-treatment with DL-3-aminobutyric acid (BABA) in the cucumber plants caused the decrease of disease severity after inoculation with anthracnose pathogen Colletotrichum orbiculare. In this study, ultrastructures of the vascular bundle and the infection structures in the leaves of BABA-treated as well as untreated cucumber plants were observed after inoculation with the anthracnose pathogen by electron microscopy. The ultrastructures of vascular bundle in the leaves of BABA-treated plants were similar to those of the untreated plants except plasmodesmata. In the BABA-treated plants, the plasmodesmata were more numerous than in the untreated plants, suggesting that the BABA treatment may cause the active transfer of metabolites through the vascular bundle. In the leaves of untreated plants, the fungal hyphae were spread widely in the plant tissues at 5 days after pathogen inoculation. Most cellular organelles in the hyphae were intact, indicating a compatible interaction between the plant and the parasite. In contrast, in the leaves of BABA pre-treated plants the growth of most hyphae was restricted to the epidermal cell layer at 5 days after inoculation. Most hyphae cytoplasm and nucleoplasm was electron dense or the intracellular organelles were degenerated. The cell walls of some plant cells became thick at the site adjacent to the intercellular hyphae, indicating a mechanical defense reaction of the plant cells against the fungal attack. Furthermore, hypersensitive reaction (HR) of the epidermal cells was often observed, in which the intracellular hyphae were degenerated. Based on these results it is suggested that BABA causes the enhancement of defense mechanisms in the cucumber plants such as cell wall apposition or HR against the invasion of C. orbiculare.