• Title/Summary/Keyword: Systematic Failure

Search Result 296, Processing Time 0.023 seconds

A Study on Development of the Reliability Evaluation System for VVVF Urban Transit (VVVF 도시철도 차량의 신뢰성 평가 시스템 개발에 관한 연구)

  • Bae Chul-Ho;Kim Sung-Bin;Lee Ho-Yong;Chang Suk-Hwa;Suh Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.7-18
    • /
    • 2005
  • Over the past twenty years, the maintenance system has been developed and its importance has been increased. For the effective maintenance of the urban transit, we have developed the maintenance system based on the concept of RCM(Reliability Centered Maintenance). RCM analysis is a systematic approach to developing a cost-effective maintenance strategy based on the various components's reliability of the system in question. It is performed according to process that includes the following steps; definition of function and functional failures of the systems, construction of RB D(Reliability Block Diagram), performance of FMEA(Failure Modes & Effects Analysis) and calculation of the reliability index. The final process of RCM is to determine appropriate failure maintenance strategies. This paper aims to define the procedure of maintenace based on the concept of RCM for urban transit. The key for a successful maintenance system is an automated scheduling to the maximum extent possible and timely executions. The developed system issues maintenance plan and repair request based on analyzed data and maintenance experience.

A Study on the Implementation of Aircraft System Safety Assessment using Probabilistic Analysis of Failure Data (고장 데이터의 확률 분석을 적용한 항공기 시스템 안전성 평가 수행 방안 연구)

  • Yoo, Seung-woo;Kim, In-Gul
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.31-38
    • /
    • 2020
  • The aircraft system safety assessment, which is emphasized in the development and certification of aircraft, is a systematic and comprehensive evaluation process to determine that all relevant failure conditions have been identified and that all significant combinations of failures cannot result in unacceptable hazards. As the aircraft systems become more complex and require integrated function and performance, proper safety objectives must be established and appropriate assessments are need to be accompanied. This paper has prepared to propose the efficient probabilistic analysis of failure data to evaluate the risk level over the entire aircraft lifecycle through the safety assessment and to review the considerations for aircraft certification and safety improvement.

Technical Performance of Two-Dimensional Shear Wave Elastography for Measuring Liver Stiffness: A Systematic Review and Meta-Analysis

  • Dong Wook Kim;Chong Hyun Suh;Kyung Won Kim;Junhee Pyo;Chan Park;Seung Chai Jung
    • Korean Journal of Radiology
    • /
    • v.20 no.6
    • /
    • pp.880-893
    • /
    • 2019
  • Objective: To assess the technical performance of two-dimensional shear wave elastography (2D-SWE) for measuring liver stiffness. Materials and Methods: The Ovid-MEDLINE and EMBASE databases were searched for studies reporting the technical performance of 2D-SWE, including concerns with technical failures, unreliable measurements, interobserver reliability, and/or intraobserver reliability, published until June 30, 2018. The pooled proportion of technical failure and unreliable measurements was calculated using meta-analytic pooling via the random-effects model and inverse variance method for calculating weights. Subgroup analyses were performed to explore potential causes of heterogeneity. The pooled intraclass correlation coefficients (ICCs) for interobserver and intraobserver reliability were calculated using the Hedges-Olkin method with Fisher's Z transformation of the correlation coefficient. Results: The search yielded 34 articles. From 20 2D-SWE studies including 6196 patients, the pooled proportion of technical failure was 2.3% (95% confidence interval [CI], 1.3-3.9%). The pooled proportion of unreliable measurements from 20 studies including 6961 patients was 7.5% (95% CI, 4.7-11.7%). In the subgroup analyses, studies conducting more than three measurements showed fewer unreliable measurements than did those with three measurements or less, but no intergroup difference was found in technical failure. The pooled ICCs for interobserver reliability (from 10 studies including 517 patients) and intraobserver reliability (from 7 studies including 679 patients) were 0.87 (95% CI, 0.82-0.90) and 0.93 (95% CI, 0.89-0.95), respectively, suggesting good to excellent reliability. Conclusion: 2D-SWE shows good technical performance for assessing liver stiffness, with high technical success and reliability. Future studies should establish the quality criteria and optimal number of measurements.

Risk Assessment of Levee Embankment Integrated Erosion and Seepage Failure Factor (침식과 침투영향을 고려한 하천제방의 위험도 평가)

  • Ahn, Ki-Hong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.591-605
    • /
    • 2009
  • In this study the risk integrated erosion and seepage failure factor and combined risk of the levee embankment were assessed. For the research of the reliability, the risk assessment of erosion, seepage and both of them combined for the levee embankment were conducted using discharge curve and stage hydrograph generated by stochastic rainfall variation method during typhoon and monsoon season. The risk of erosion was evaluated using tractive force and the seepage analysis was performed by selecting representative cross sections for SEEP/W model analysis. And the probability of seepage failure was assessed with MFOSM analysis using critical hydraulic gradient method. Unlike deterministic analysis method, quantitative risk could be obtained and the characteristics of realistic rainfall variation patterns as well as a variety of factors contributing to levee failure could be reflected in this research. The results of this study show significantly enhanced applicability for the combined risk. As this model can be employed to determine dangerous spots for levee failure and to establish flood insurance linked with flood risk map, it will dramatically contribute to the establishment of both efficient and systematic measures for integrated flood management on a watershed.

Statistical Issues in the Articles Published in the Journal of Veterinary Clinics (한국임상수의학회지에 발표된 논문의 통계분석 검토)

  • Pak, Son-Il;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.27 no.2
    • /
    • pp.170-174
    • /
    • 2010
  • With the ease availability of statistical software and powerful computers the application of statistical methods in domestic veterinary journals is on the increase. In parallel with this benefit, statistical errors are not uncommon even in renowned scientific and medical journals. These errors may lead to misinterpretation of the data, thereby, subjected to faulty conclusions. A systematic review of articles published in 8 issues of the Journal of Veterinary Clinics during 2006-2007 was performed to assess the statistical methodology and reporting. Ninety-four (72.9%) articles of the 129 original articles screened included any inferential statistical analysis in the article, including comparison of 3 or more groups (53 or 56.4%), comparison of independent 2 groups (40 or 42.6%), and paired t-test (9 or 9.6%) in order. Of the 94 articles in which statistical analysis was done 62 (or 66.0%) had at least 1 statistical error. Errors included failure to apply or incorrectly applying independent Student's t-test for paired data or vice versa, inappropriate use of t-test for more than 3 groups and failure in chi-square test to consider continuity-correction for small expected frequencies. The common errors in ANOVA were failure to validate assumption of the test, inappropriate post-hoc multiple-comparison and incorrect assumption of independence of data in repeated measures design. Reporting errors included failure to state statistical methods and failure to state specific test if more than 1 test was done. It is suggested that an editorial effort would be necessary to achieve the improvement of appropriate statistical procedures through the publication of statistical guidelines to author(s).

Effect of Proof Test of Protective System on Securing Safety of Off-site Risk Assessment (보호시스템 보증시험 적용이 장외영향평가 안전성 확보에 미치는 영향)

  • Kim, Min-Su;Kim, Jae-Young;Lee, Eun-Byeol;Yoon, Junheon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.46-53
    • /
    • 2017
  • The risk is expressed as consequence of damage multiplied by likelihood of failure. The installation of a protective system reduces the risk by reducing the likelihood of failure at the facility. Also, the protective system has different effects on the likelihood of failure according to the proof test cycle. However, when assessing risks in the Off-site Risk Assessment (ORA) system, the variation in risk was not reflected according to the proof test cycle of protective system. This study was conducted to examine the need for proof test and the importance of cycle setting by applying periodic proof test of the protective system to ORA. The results showed that the likelihood of failure and the risk increased with longer proof test cycle. The risk of a two-yearly proof test was eight times greater than that of a three-month cycle. From the results, the protective system needs periodic proof test. Untested protective system for a long term cannot be reliable because it is more likely to be failed state when it is called upon to operate. In order to reduce the risk to an acceptable level, it is effective to differently set the proof test cycle according to the priority. This study suggested a more systematic and accurate risk analysis standard than ORA. This standard is expected to enable an acceptable level of risk management by systematically setting the priority and proof test cycle of the protective system. It is also expected to contribute to securing the safety of chemical facilities and at the same time, will lead to the development of the ORA system.

Development of Optimal Facility Management (FM) Process Using Spatial-data-based Mean Time Between Failure (MTBF) Analysis (공간정보 기반 MTBF 분석을 활용한 최적의 FM 프로세스 개발)

  • Yoon, Jonghan;Cha, Heesung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.3
    • /
    • pp.43-51
    • /
    • 2018
  • Facility Management (FM) phase in building lifecycle management is the most crucial phase concerning building value and life cycle cost management. Nevertheless, systematic and rational FM process is not yet constructed, leading to failure of facility value and cost management from accurate and proactive FM. This is because there has been minimal approach regarding construction of optimal FM process based on rational FM data analysis. The purpose of this study is to provide optimal FM process with quantitative FM data analysis method using spatial data. This study investigated existing FM data structure and derive the limitation of it from both expert interview and practical FM material analysis. As a solution for this limitation, this study provided optimal FM process with MTBF (Mean Time Between Failure), which is quantitative FM data analysis method. The effect of the provided process was validated with a case study. It is expected that this process allows rational and objective FM data analysis, resulting in accurate and proactive FM. And it is expected that it can be used as a useful basic data for developing an effective system for the FM process.

Reliability Updates of Driven Piles Based on Bayesian Theory Using Proof Pile Load Test Results (베이지안 이론을 이용한 타입강관말뚝의 신뢰성 평가)

  • Park, Jae-Hyun;Kim, Dong-Wook;Kwak, Ki-Seok;Chung, Moon-Kyung;Kim, Jun-Young;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.161-170
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was obrained based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability indices of driven steel pipe piles by adding more proof pile load test results, even not conducted to failure, to the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. The empirical method proposed by Meyerhof is used to calculate the predicted pile resistance. Reliability analyses were performed using the updated distribution of pile resistance ratio. The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian updates are most effective when limited data are available for reliability analysis.

Reliability Evaluation Considering the Information and Human Factors in the Advanced Pressurized water Reactor 1400MWe under Uncertainty (신형경수로 1400에서 정보와 인적요인을 고려한 신뢰성 평가)

  • Kang Young - Sig
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.25-30
    • /
    • 2002
  • The problem of qualitative reliability system is very important issue in the digitalized nuclear power plant, because the failure of its system brings about extravagant economic loss, extensive environment destruction, and fatal damage of human. Therefore this study is to develop the reliability evaluation model through the normalized scoring model by the quantitative and qualitative factors considering the advanced safety factors In the Advanced Pressurized water Reactor 1400MWe(APR 1400) under uncertainty Especially, the qualitative factors considering the information and human factors for the systematic and rational justification have been closely analyzed. The reliability evaluation model can be simply applied in real fields in order to minimize the industrial accident and human error in the digitalized nuclear power plant.

  • PDF

Suggestion of Systematic Approach for Developing Railway Software (철도소프트웨어의 개발을 위한 체계적 접근법 제안)

  • Joung, Eui-Jin;Shin, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.158-160
    • /
    • 2008
  • Safety critical systems are those in which a failure can have serious and irreversible consequences. Nowadays digital technology has been rapidly applied to critical system such as railways, airplanes, nuclear power plants, and vehicles. The main difference between analog system and digital system is that the software is the key component of the digital system. The digital system performs more varying and highly complex functions efficiently compared to the existing analog system because software can be flexibly designed and implemented. The flexible design make it difficult to predict the software failures. This paper reviews safety standard and criteria for safety critical system such as railway system and suggests development methodology, ordering management and assessment process for railway software with more detail description.

  • PDF