Browse > Article
http://dx.doi.org/10.3741/JKWRA.2009.42.8.591

Risk Assessment of Levee Embankment Integrated Erosion and Seepage Failure Factor  

Ahn, Ki-Hong (Dam & Watershed Dept., K-Water)
Han, Kun-Yeun (School of Archi. & Civil Engineering, Kyungpook National Univ.)
Publication Information
Journal of Korea Water Resources Association / v.42, no.8, 2009 , pp. 591-605 More about this Journal
Abstract
In this study the risk integrated erosion and seepage failure factor and combined risk of the levee embankment were assessed. For the research of the reliability, the risk assessment of erosion, seepage and both of them combined for the levee embankment were conducted using discharge curve and stage hydrograph generated by stochastic rainfall variation method during typhoon and monsoon season. The risk of erosion was evaluated using tractive force and the seepage analysis was performed by selecting representative cross sections for SEEP/W model analysis. And the probability of seepage failure was assessed with MFOSM analysis using critical hydraulic gradient method. Unlike deterministic analysis method, quantitative risk could be obtained and the characteristics of realistic rainfall variation patterns as well as a variety of factors contributing to levee failure could be reflected in this research. The results of this study show significantly enhanced applicability for the combined risk. As this model can be employed to determine dangerous spots for levee failure and to establish flood insurance linked with flood risk map, it will dramatically contribute to the establishment of both efficient and systematic measures for integrated flood management on a watershed.
Keywords
risk assessment; erosion; seepage; MFOSM method; levee embankment;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Calle, E.O.F., Best, H., Sellmeijer, J.B., and Weijers, J. (1989). 'Probabilistic analysis of piping underneath water retaining structures.' Proc. 12th Int. Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Vol. 2, pp. 819-822
2 Kuo, J.T., Yen, B.C., Hsu, Y.C., and Lin, H.F. (2007). 'Risk analysis for dam overtopping-Feitsui Reservoir as a case study.' J. Hydraul. Engrg., ASCE, Vol. 133, No. 8, pp. 955-963   DOI   ScienceOn
3 Wolff, T.F. (1994). Evaluating Reliability of Existing levees, report to US. Army Engineer Waterways Experiment Station, Vicksburg, MS
4 이종석 (2002). '댐의 안전성 평가를 위한 위험도 해석기법의 적용.' 한국수자원학회논문집, 한국수자원학회, Vol. 35, No. 6, pp. 651-664   과학기술학회마을   DOI
5 경상북도 (2005). 침수흔적조사 및 홍수지도제작 용역
6 전민우, 한건연, 김지성 (2006). 'Monte Carlo 기법에 의한 하천제방의 안정성 평가.' 대한토목학회논문집, 대한토목학회, Vol. 26, N0. 5-B, pp. 501-510
7 한건연, 안기홍, 김지은 (2008). '감천 유역의 강우양상분석 및 추계학적 생성에 관한 연구.' 대한토목학회학술발표회 논문집, 대한토목학회, pp. 501-510
8 Lane, E.W. and Carlson, E.J. (1953). 'Some factors affecting the stability of canals constructed in course granulated material.' Proc. of the Minnesota Internal Hydraulics Convention, pp. 37.48
9 건설교통부 (2002). 하천시설물 설계시 신뢰도 분석개념 도입에 관한 연구
10 건설교통부 부산지방국토관리청 (1997). 감천 하천정비기본계획(보완)
11 김종해, 한건연, 박종석 (2002). '하천제방의 신뢰도 분석을 위한 HEC-2 모형의 Monte Carlo 모의.' 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp. 517-522   과학기술학회마을
12 김종해, 한건연, 서규우 (2003). '하천 홍수범람모의를 위한 불확실도 해석기법의 적용.' 한국수자원학회논문집, 한국수자원학회, 제36권, 제4호, pp. 661-671   과학기술학회마을   DOI
13 소방방재청 (2007). 2007년도 주요통계 및 자료, pp. 316-317
14 한건연, 이종석, 김상호 (1997a). '댐 및 하천제방에 대한 위험도 해석기법의 개발 : I. 모형 및 이론.' 한국수자원학회논문집, 한국수자원학회, 제30권, 제6호, pp. 679-690   과학기술학회마을
15 한건연, 이종석, 김상호 (1997b). '댐 및 하천제방에 대한 위험도 해석기법의 개발 : Ⅱ. 적용 예.' 한국수자원학회논문집, 한국수자원학회, 제30권, 제6호, pp. 691-698   과학기술학회마을
16 한국수자원학회 (2002). 하천설계기준.해설
17 한국수자원학회 (2005). 하천설계기준.해설
18 Brizendine, A.L. (1997). Risk-Based Analysis of Levees, Ph.D. Thesis, Univ. of West Virginia
19 A-Grivas, D. (1980). 'A reliability approach to the design of geotechnical systems.' Rensselaer Polytechnic Institute Research Paper, Transportation Research Board Conference, Washington, D.C.
20 Asoka, A. and A-Grivas, D. (1982). 'Spatial variability of the undrained strength of clays.' J. Geotech. Eng. Div., ASCE, Vol. 108, No. 5, pp. 743-755
21 Chowdhury, R.N. (1984). 'Recent Developments in Landslide: Probabilistic Mthods.' Proc. 4th Int. Symp. on Landslides, Vol. 1, Toronto, pp. 209-228
22 Das, B.M. (1998). Principles of Geotechnical Engineering, Thomson Learning Inc
23 Hunt, R.E. (1986). Geotechnical engineering analysis and evaluation, McGraw-Hill
24 Kanning, W., Baars, S.V., and Vrijling, J.K. (2008). 'The Stability of Flood Defenses on Permeable soils : The London Avenue Canal Failures in New Orleans.' 6th Int. Conference on Case Histories in Geotechnical Engineering, No. 2.72, pp. 1-9
25 Vrouwenvelder. (1987). Probabilistic design of flood defences, Report No. B-87-404, IBBC-TNO, The Netherlands
26 Tung, Y.K. and Yen, B.C. (2005). Hydrosystem engineering uncertainty analysis, McGraw-Hill Book Company, NY, USA
27 Li, K.S. and Lumb, P. (1987). 'Probabilistic Design of Slopes.' Canadian Geotechnical Journal, Vol. 24, pp. 520-535   DOI   ScienceOn
28 Steenbergen, H.M.G.M., Lassing, B.L., Vrouwenvelder, A.C.W.M., and Waats, P.H. (2004). 'Reliability analysis of flood defence system.' HERON, Vol. 49, No. 1, pp. 51-73
29 Termaat, R.J. and Calle, E.O.F. (1994). 'Short term acceptable risk of slope failure of levees.' Proc. of the 13th Int. Conference on Soil Mechanics and Foundation Engineering, New Delhi, India
30 U.S. Naval Facilities Engineering Command (1986). Soil Mechanics Design Manual 7.01
31 Vrijling, J.K. (2000). Probabilistic Design - Lecture Note, IHE Delft