• Title/Summary/Keyword: System-level Simulation

Search Result 2,154, Processing Time 0.029 seconds

Compensation of Phase Noise and IQ Imbalance in the OFDM Communication System of DFT Spreading Method (DFT 확산 방식의 OFDM 통신 시스템에서 위상잡음과 직교 불균형 보상)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • DFT-spread OFDM(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing) is very effective for solving the PAPR(Peak-to-Average Power Ratio) problem. Therefore, the SC-FDMA(Single Carrier-Frequency Division Multiple Access) which is basically same to the DFT spread OFDM was adopted as the uplink standard of the 3GPP LTE ($3^{rd}$ Generation Partnership Project Long Term Evolution). Unlike the ordinary OFDM system, the SC-FDMA using DFT spreading method is vulnerable to the ICI(Inter-Carrier Interference) problem caused by the phase noise and IQ(In-phase/Quadrature) imbalance and effected FDE(Frequency Domain Equalizer). In this paper, the ICI effects from the phase noise and IQ imbalance which can be problems in uplink transmission are analyzed according the back-off level of HPA. Next, we propose the equalizer algorithm to remove the ICI effects. This proposed equalizer based on the FDE can be considered as up-graded and improved version of PNS(Phase Noise Suppression) algorithm. This proposed equalizer effectively compensates the ICI resulting from the phase noise and IQ imbalance. Finally, through the computer simulation, it can be shown that about SNR=14 dB is required for the $BER=10^{-4}$ after ICI compensation when the back-off is 4.5 dB, $\varepsilon=0.005$, $\phi=5^{\circ}$, and $pn=0.06\;rad^2$.

Microarchitectural Defense and Recovery Against Buffer Overflow Attacks (버퍼 오버플로우 공격에 대한 마이크로구조적 방어 및 복구 기법)

  • Choi, Lynn;Shin, Yong;Lee, Sang-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.178-192
    • /
    • 2006
  • The buffer overflow attack is the single most dominant and lethal form of security exploits as evidenced by recent worm outbreaks such as Code Red and SQL Stammer. In this paper, we propose microarchitectural techniques that can detect and recover from such malicious code attacks. The idea is that the buffer overflow attacks usually exhibit abnormal behaviors in the system. This kind of unusual signs can be easily detected by checking the safety of memory references at runtime, avoiding the potential data or control corruptions made by such attacks. Both the hardware cost and the performance penalty of enforcing the safety guards are negligible. In addition, we propose a more aggressive technique called corruption recovery buffer (CRB), which can further increase the level of security. Combined with the safety guards, the CRB can be used to save suspicious writes made by an attack and can restore the original architecture state before the attack. By performing detailed execution-driven simulations on the programs selected from SPEC CPU2000 benchmark, we evaluate the effectiveness of the proposed microarchitectural techniques. Experimental data shows that enforcing a single safety guard can reduce the number of system failures substantially by protecting the stack against return address corruptions made by the attacks. Furthermore, a small 1KB CRB can nullify additional data corruptions made by stack smashing attacks with only less than 2% performance penalty.

Hardware Architecture of High Performance Cipher for Security of Digital Hologram (디지털 홀로그램의 보안을 위한 고성능 암호화기의 하드웨어 구조)

  • Seo, Young-Ho;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.374-387
    • /
    • 2012
  • In this paper, we implement a new hardware for finding the significant coefficients of a digital hologram and ciphering them using discrete wavelet packet transform (DWPT). Discrete wavelet transform (DWT) and packetization of subbands is used, and the adopted ciphering technique can encrypt the subbands with various robustness based on the level of the wavelet transform and the threshold of subband energy. The hologram encryption consists of two parts; the first is to process DWPT, and the second is to encrypt the coefficients. We propose a lifting based hardware architecture for fast DWPT and block ciphering system with multi-mode for the various types of encryption. The unit cell which calculates the repeated arithmetic with the same structure is proposed and then it is expanded to the lifting kernel hardware. The block ciphering system is configured with three block cipher, AES, SEED and 3DES and encrypt and decrypt data with minimal latency time(minimum 128 clocks, maximum 256 clock) in real time. The information of a digital hologram can be hided by encrypting 0.032% data of all. The implemented hardware used about 200K gates in $0.25{\mu}m$ CMOS library and was stably operated with 165MHz clock frequency in timing simulation.

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

Implementation of Policy based In-depth Searching for Identical Entities and Cleansing System in LOD Cloud (LOD 클라우드에서의 연결정책 기반 동일개체 심층검색 및 정제 시스템 구현)

  • Kim, Kwangmin;Sohn, Yonglak
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.67-77
    • /
    • 2018
  • This paper suggests that LOD establishes its own link policy and publishes it to LOD cloud to provide identity among entities in different LODs. For specifying the link policy, we proposed vocabulary set founded on RDF model as well. We implemented Policy based In-depth Searching and Cleansing(PISC for short) system that proceeds in-depth searching across LODs by referencing the link policies. PISC has been published on Github. LODs have participated voluntarily to LOD cloud so that degree of the entity identity needs to be evaluated. PISC, therefore, evaluates the identities and cleanses the searched entities to confine them to that exceed user's criterion of entity identity level. As for searching results, PISC provides entity's detailed contents which have been collected from diverse LODs and ontology customized to the content. Simulation of PISC has been performed on DBpedia's 5 LODs. We found that similarity of 0.9 of source and target RDF triples' objects provided appropriate expansion ratio and inclusion ratio of searching result. For sufficient identity of searched entities, 3 or more target LODs are required to be specified in link policy.

Design of Ku-Band Low Noise Amplifiers including Band Pass Filter Characteristics for Communication Satellite Transponders (대역통과여파기 특성을 갖는 통신위성중계기용 Ku-Band 저잡음증폭기의 설계 및 제작)

  • 임종식;김남태;박광량;김재명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.872-882
    • /
    • 1994
  • In this paper, the Low Noise Amplifier(LNA) is designed and fabricated to include a band pass filter characteristics considering the antenna system characteristics according to the transmitting and receiving signal level of communication satellite transponder. As an example, a 2-stage low noise amplifier and a 4-stage amplifier and designed, fabricated and measured at 14,0~14.5GHz of receiving frequency band. This fabricated LNA has shown the gain with very good flatness within pass-band, and its gain decreases rapidly out of band resulting in supperssion of the transmitting signal power leakage. It has shown the 20.3dB +- 0.1dB of pass-band gain, the 1.44dB +-0.04dB of noise figure and the 14dB rejection out of band(12.25~12.75GHz). The gain flatness, noise figure and group delay of this 2-stage LNA satisfactorily met the simulation results. And the fabricated 4-stage amplifier has shown the more than 42dB of pass-band gain, the +-0.25dB of flatness and the 28dB of the rejection effect for transmitting power leakage. The 2-stage LNA and 4-stage amplifier, in this paper, will bring a design margin for the input filter and also result in the system cost reduction.

  • PDF

Machine Learning Based Structural Health Monitoring System using Classification and NCA (분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템)

  • Shin, Changkyo;Kwon, Hyunseok;Park, Yurim;Kim, Chun-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • This is a pilot study of machine learning based structural health monitoring system using flight data of composite aircraft. In this study, the most suitable machine learning algorithm for structural health monitoring was selected and dimensionality reduction method for application on the actual flight data was conducted. For these tasks, impact test on the cantilever beam with added mass, which is the simulation of damage in the aircraft wing structure was conducted and classification model for damage states (damage location and level) was trained. Through vibration test of cantilever beam with fiber bragg grating (FBG) sensor, data of normal and 12 damaged states were acquired, and the most suitable algorithm was selected through comparison between algorithms like tree, discriminant, support vector machine (SVM), kNN, ensemble. Besides, through neighborhood component analysis (NCA) feature selection, dimensionality reduction which is necessary to deal with high dimensional flight data was conducted. As a result, quadratic SVMs performed best with 98.7% for without NCA and 95.9% for with NCA. It is also shown that the application of NCA improved prediction speed, training time, and model memory.

A Study on Technology Evaluation Models and Evaluation Indicators focusing on the Fields of Marine and Fishery (기술력 평가모형 및 평가지표에 대한 연구: 해양수산업을 중심으로)

  • Kim, Min-Seung;Jang, Yong-Ju;Lee, Chan-Ho;Choi, Ji-Hye;Lee, Jeong-Hee;Ahn, Min-Ho;Sung, Tae-Eung
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.90-102
    • /
    • 2021
  • Technology evaluation is to assess the ability of technology commercialization entities to generate profits by using the subject technology, and domestic technology evaluation agencies have established and implemented their own evaluation systems. In particular, the recently developed technology evaluation model in the fields of marine and fishery does not sufficiently reflect the poor environment for technology development compared to other industries, so it does not pass the level of T4 rating, which is considered appropriate for investment. This is recognized as a challenge that occurs when the common evaluation indicators and evaluation scales used in other industries, and when the scoring system for T1 to T10 grading is similarly or identically utilized. Therefore, through this study, we intend to secure the appropriateness and reliability of the results of the comprehensive rating calculation by developing technology evaluation models and indicators that well explain the nine marine and fisheries industry classification systems. Based on KED and technology evaluation case data, AHP-based index weighting and Monte Carlo simulation-based rating system are applied and the results of case studies are verified. Through the proposed model, we aim to enhance the usability of R&D and commercialization support programs based on fast, convenient and objective evaluation results by applying to upcoming technology evaluation cases.

Analysis of Quantization Noise in Magnetic Resonance Imaging Systems (자기공명영상 시스템의 양자화잡음 분석)

  • Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • Purpose : The quantization noise in magnetic resonance imaging (MRI) systems is analyzed. The signal-to-quantization noise ratio (SQNR) in the reconstructed image is derived from the level of quantization in the signal in spatial frequency domain. Based on the derived formula, the SQNRs in various main magnetic fields with different receiver systems are evaluated. From the evaluation, the quantization noise could be a major noise source determining overall system signal-to-noise ratio (SNR) in high field MRI system. A few methods to reduce the quantization noise are suggested. Materials and methods : In Fourier imaging methods, spin density distribution is encoded by phase and frequency encoding gradients in such a way that it becomes a distribution in the spatial frequency domain. Thus the quantization noise in the spatial frequency domain is expressed in terms of the SQNR in the reconstructed image. The validity of the derived formula is confirmed by experiments and computer simulation. Results : Using the derived formula, the SQNRs in various main magnetic fields with various receiver systems are evaluated. Since the quantization noise is proportional to the signal amplitude, yet it cannot be reduced by simple signal averaging, it could be a serious problem in high field imaging. In many receiver systems employing analog-to-digital converters (ADC) of 16 bits/sample, the quantization noise could be a major noise source limiting overall system SNR, especially in a high field imaging. Conclusion : The field strength of MRI system keeps going higher for functional imaging and spectroscopy. In high field MRI system, signal amplitude becomes larger with more susceptibility effect and wider spectral separation. Since the quantization noise is proportional to the signal amplitude, if the conversion bits of the ADCs in the receiver system are not large enough, the increase of signal amplitude may not be fully utilized for the SNR enhancement due to the increase of the quantization noise. Evaluation of the SQNR for various systems using the formula shows that the quantization noise could be a major noise source limiting overall system SNR, especially in three dimensional imaging in a high field imaging. Oversampling and off-center sampling would be an alternative solution to reduce the quantization noise without replacement of the receiver system.

  • PDF