• Title/Summary/Keyword: System-level Simulation

Search Result 2,138, Processing Time 0.033 seconds

Analysis of Loss of Offsite Power Transient Using RELAP5/MOD1/NSC; II: KNU1 Design-Base Simulation (RELAP5/MOD1/NSC를 이용한 원자력 1호기 외부전원상실사고해석;II:설계기준사고)

  • Kim, Hyo-Jung;Chung, Bub-Dong;Lee, Young-Jin;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.175-182
    • /
    • 1986
  • The KNUI (Korea Nuclear Unit 1) loss of offsite power transient as a design-base accident has been simulated using the RELAP5/MOD1/NSC computer code. The analysis is carried out using the best-estimate methodology, but the sequence and its assumptions are based on the evaluation methodology th at emphasizes conservatism. Important thermal-hydraulic parameters such as average temperature, steam generator level and pressurizer water volume are compared with the results in the KNU1 Final Safety Analysis Report (FSAR). The present analysis gives much lower RCS average temperature and pressurizer water volume, and much higher S/G water volume at the turnaround point, which may be considered to be additional improved safety margins. This is expected since the present analysis deals with the best-estimate thermal-hydraulic models as well as the initial conditions on a best-estimate basis. These additional safety margins may contribute to further validate the safety of the KNU1 in this type of accidents(Decrease in Heat Removal by the Secondary System).

  • PDF

A Study on Cell Planning for High-Speed Portable Internet (휴대인터넷 시스템 셀 설계 방식에 관한 연구)

  • Kim, Myoung-Min;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.71-78
    • /
    • 2005
  • Nowadays, the demand of HPI(High-speed Portable Internet) has been gradually increased to support the various services of high speed wire line internet such as xDS. HPI can support high speed internet in anyplace, anytime. For successful development of HPI, the performance should be evaluated according to the cell size and/or the number of users and cell design should be carried out based on these criteria. The previous cellular systems using CDMA technique focus on the establishment of link based on power control but HPI systems consider the QoS (Quality of Service) and its performance based on the scheduling technique. The results from the system level simulation show that the throughput is sensitive to the cell size and the number of users has little impact on it. Moreover, the variation of service delay is more sensitive to the number of users but less to the cell size.

  • PDF

Development of Liquid Metal Passive Cooling Flow Simulation System (액체금속 피동냉각유동모사 실증설비의 개발)

  • Ryu, Kyung-Ha;Kim, Jae-Hyoung;Lee, Tae-Hyun;Lee, Sang-Hyuk;Bahn, Byoung-Min
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.257-264
    • /
    • 2015
  • To maintain sustainability of nuclear energy as an important energy source, both safety problem and Spent Nuclear Fuels(SNFs) problem should be solved. In case of Gen-IV reactors such as fast reactor, SNFs can be used as fuels by using fast neutrons. It can be a suitable treatment method of high-level waste in near future. Liquid metals such as Sodium or Lead-Bismuth Eutectic (LBE) can be possibly used as a coolant to use fast neutrons. In this paper, it was described that natural circulation parameter studies, design analyses, material selections and a completion of facilities. To develop a natural circulation facility, thermal hydraulic analyses were performed. Installation technique of liquid metal natural circulation were secured.

Optical Image Encryption Based on Characteristics of Square Law Detector (세기검출기를 이용한 광 영상 암호화)

  • Lee, Eung-Dae;Park, Se-Jun;Lee, Ha-Un;Kim, Su-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.34-40
    • /
    • 2002
  • In this paper, a new encryption method for a binary image using Phase modulation and Fourier transform is proposed. For decryption we use the characteristics of square law detector. In encryption process, a key image is obtained by phase modulation of 256 level random pattern and its Fourier transformation, and input image is encrypted by Fourier transforming the multiplication of the phase modulated random pattern and phase modulated input image. The encrypted image and key image have only phase information, so they can not be copied or counterfeited and the original image can not be decrypted without the key image. To reconstruct the original image, each phase mask of the key image and the encrypted image must be placed on each path of the Mach-Zehnder interferometry with Fourier transform lens and the output image is obtained in the form of intensity in the CCD(Charge Coupled Device) camera. The real-time decryption is possible in the proposed system by use of a LCD as a phase modulator and a CCD camera as an intensity detector. The proposed method shows a good performance in the computer simulation and optical experiment as an encryption scheme.

Efficient Cache Architecture for Transactional Memory (트랜잭셔널 메모리를 위한 효율적인 캐시 구조)

  • Choi, Dong-Min;Kim, Seung-Hun;Ro, Won-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • Traditional transactional memory systems are no longer able to guarantee the performance of diverse applications with overflowed transactions since there is the drawback that tracking the data for logging is difficult. Especially, this mechanism has a disadvantage of increasing communication delay for sustaining the state which is required to detect the conflict on the overflowed transactions from the first level cache in the transactional memory systems. To address this point, we have focused on the cache architecture of the systems to reduce the overhead caused by overflows and cache misses. In this paper, we present Supportive Cache which reduces additional overhead during transactions. Supportive Cache performs a parallel look-up with L1 private cache and uses the same replacement policy as L1 private cache. We evaluate the performance of the proposed design by comparing LogTM-SE with and without Supportive Cache. The simulation results show that our system improves the performance by 37% on average, compared to the original LogTM-SE which uses the same hardware resource.

Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002) (단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사)

  • Kim, Sena;Lim, Gyu-Ho
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.

Performance Analysis and Evaluation of Deployment in Small Cell Networks

  • Zheng, Kan;Li, Yue;Zhang, Yingkai;Jiang, Zheng;Long, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.886-900
    • /
    • 2015
  • Small cells are deployed in Heterogeneous Networks (HetNet) to improve overall performance. These access points can provide high-rate mobile services at hotspots to users. In a Small Cell Network (SCN), the good deployment of small cells can guarantee the performance of users on the basis of average and cell edge spectrum efficiency. In this paper, the performance of small cell deployment is analyzed by using system-level simulations. The positions of small cells can be adjusted according to the deployment radius and angle. Moreover, different Inter-Cell Interference Coordination (ICIC) techniques are also studied, which can be implemented either in time domain or in frequency domain. The network performances are evaluated under different ICIC techniques when the locations of Small evolved Nodes (SeNBs) vary. Simulation results show that the average throughput and cell edge throughput can be greatly improved when small cells are properly deployed with the certain deployment radius and angle. Meanwhile, how to optimally configure the parameters to achieve the potential of the deployment is discussed when applying different ICIC techniques.

Performance Analysis of a Satellite Communication System based on IPsec VPN (IPsec VPN 기반 위성 통신 시스템 성능 분석)

  • Jeong, Won-Ho;Hwang, Lan-Mi;Kim, Ki-Hong;Park, Sang-Hyun;Yang, Sang-Woon;Lim, Jeong-Seok;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Satellite signal is excellent broadband, can provide the same information in a wide range, but there is a disadvantage that much less of the security level of the data. Therefore, supplementation of safety is a serious problem than anything in the satellite communication. In this paper, it was simulated by applying ARIA in encryption technique and by applying transport mode, tunnel mode in security header AH and ESP in order to examine the effect of IPsec VPN. In addition, we had compare with general services that do not apply encryption in order to analyze the impact of the encryption algorithm. Channel, by applying the Markov channel and adding AWGN, is constituted a satellite communication environment. In case of retransmission based error control scheme, we applied Type-II HARQ scheme and Type-III HARQ scheme which are performance is a good way in recently, and it is constituted by a turbo code and BPSK modulation scheme. we were analyzed performance in BER and Throughput in order to compare the simulation more effectively.

Design of Scheduling Superframe based on IEEE 802.15.4 MAC using LQI (LQI를 이용한 IEEE 802.15.4 MAC 기반의 스케줄링 슈퍼프레임 설계)

  • Chon, Young-Jo;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.159-164
    • /
    • 2016
  • This paper proposes an improved superframe structure with one : N situation of the network as a target for efficiency battery and communication performance used in the existing standard IEEE 702.15.4 MAC layer. The proposed superframe transforms and adds a two structures. First, we add the proposed scheduling interval after the arrival of the beacon. Second, we change to a structure in which one of the contention access period is divided into two. The contention access period and the contention-free access period of active portion are divided according to the LQI value of the device. Through this system-level simulation written by $c{^+^+}$, as a results show that the battery consumption and transmission performance has been increased.

Fragility functions for eccentrically braced steel frame structures

  • O'Reilly, Gerard J.;Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.367-388
    • /
    • 2016
  • Eccentrically braced frames (EBFs) represent an attractive lateral load resisting steel system to be used in areas of high seismicity. In order to assess the likely damage for a given intensity of ground shaking, fragility functions can be used to identify the probability of exceeding a certain damage limit-state, given a certain response of a structure. This paper focuses on developing a set of fragility functions for EBF structures, considering that damage can be directly linked to the interstorey drift demand at each storey. This is done by performing a Monte Carlo Simulation of an analytical expression for the drift capacity of an EBF, where each term of the expression relies on either experimental testing results or mechanics-based reasoning. The analysis provides a set of fragility functions that can be used for three damage limit-states: concrete slab repair, damage requiring heat straightening of the link and damage requiring link replacement. Depending on the level of detail known about the EBF structure, in terms of its link section size, link length and storey number within a structure, the resulting fragility function can be refined and its associated dispersion reduced. This is done by using an analytical expression to estimate the median value of interstorey drift, which can be used in conjunction with an informed assumption of dispersion, or alternatively by using a MATLAB based tool that calculates the median and dispersion for each damage limit-state for a given set of user specified inputs about the EBF. However, a set of general fragility functions is also provided to enable quick assessment of the seismic performance of EBF structures at a regional scale.