• Title/Summary/Keyword: System of Circulation

Search Result 1,723, Processing Time 0.029 seconds

Unsteady Single-Phase Natural Circulation Flow Mixing Prediction Using CATHARE Three-Dimensional Capabilities

  • Salah, Anis Bousbia;Vlassenbroeck, Jacques
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.466-475
    • /
    • 2017
  • Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal-hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

Three-dimensional Numerical Modelling of Seawater Circulation of Semi-enclosed Bay with the Flow-control Structures

  • JONG-KYU KIM;TAE-SOON KANG;HEON-TAE KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of tidal circulation with the flow-control structures using the three-dimensional numerical model (POM, Princeton Ocean Model) of Chinhae Bay, Korea were investigated. To confirm th efficiencies of flow-control structures, the training wall and submerged training wall were constructed at the mouth and narrow channel in Chinhae Bay. On the basis of the present investigation, the tidal circulation induced by the construction of flow-control structures could enhance the water exchange improvement appropriately. And, th training wall at the central is more dominated than the other structures for the efficient of water exchange. The sites and types of structure and flow patterns seem to be very sensitive in tidal simulation and changes in flow fields.

  • PDF

Drogue Tracking in the Coastal Waters of Ulreungdo-Tokto in Summer (측류판 표류실험에 의한 하계 울릉도${\cdot}$독도 근해의 해수유동 특성)

  • CHANG Sun-duck;KIM Jong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.583-593
    • /
    • 1994
  • The East Korean Warm Current is known as an anticyclonic circulation in the Ulreung Basin in the southwestern East Sea of Korea. This circulation was approximately estimated by dynamic methods based on the oceanographic observation and remote sensing data. In this study, the existence of circulation in the anticyclonic region of East Korean Warm Current(Tsushima current) in early summer was directly measured by drogue tracking using a global positioning system. At the same time, the velocity was calculated by dynamic method and compared using data collected by remote sensing. As results, these values are shown to be nearly the same, and an anticyclonic circulation was found around Ulreungdo-Tokto. The maximum northward and southward flow speed was deduced to be around 0.6 and one knot, respectively.

  • PDF

HWR Shield Cooling Natural Circulation Study (원자로 차폐체 자연순환냉각에 관한 연구)

  • Shin, Jung-Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.221-227
    • /
    • 2012
  • The CANDU 9 shield cooling system was designed and layout with the objective of promoting natural circulation on loss of forced flow. In the present study, the shield cooling natural circulation was analyzed using verified the thermal-hydraulic code when the coolant pump or the heat exchanger was lost. This study showed that thermosyphoning cooled the end shields and prevented the end shields and the reserve water tank from boiling for at least 8 hours on loss of the shield cooling pumps but the heat exchangers still operational. With the loss of both pumps and heat exchangers, the end shields remain subcooled for up to 4 hours. To enhance thermosyphoning, the bypass connection to the line from the reserve water tank should be relocated to a point as low as possible.

The New Paradigm of Circular Economy and Crossing-culture In the Network-manufacture System

  • Yang, Xiao-Yuan;Huang, Chuan-Kun
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2007.02a
    • /
    • pp.181-188
    • /
    • 2007
  • In this paper, the management thoughts of The network-manufacture based on virtual-agile organization is Brief summarized, then an explanation had been made about the virtual circulation economy patterns paradigm, which is integrated the virtual-agile manufacture and circulation economy theory, the critical content of this paradigm, at last we recognized the virtual-agile organization pattern circulation economy is one important trend of the network-manufacture development in the future.

  • PDF

An Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation under External Vessel Cooling (원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 실험적 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Kim, Hwan-Yeol;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1897-1902
    • /
    • 2003
  • An 1/21.6 scaled experimental facility was prepared utilizing the results of a scaling analysis to simulate the APRI400 reactor and insulation system. The behaviors of the boiling-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the wall heat flux, upper exit slot area and configuration. And non-heating experiments have also been performed and discussed to certify the hydraulic similarity of the heating experiments by injecting air equivalent to the steam generated in the heating experimental condition.

  • PDF

Analysis of the Effectiveness on Instructional Program by Water Circulation System Device (물의 순환 시스템 장치 개발 및 수업 프로그램 효과 분석)

  • Kang, Jung Su;Kim, Hyoungbum
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.11 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • The purpose of the study is to visualize the concept of water circulation in elementary school students through science behavioral system. Elementary school students found it difficult to understand concepts related to the water cycle. Most of the elementary school children think it rains because the clouds are heavier. It is most difficult to explain invisible concepts to elementary school children. Also, experiments in current textbooks are likely to disrupt scientific concepts. Accordingly, conventional water cycle, dew, fog, and cloud experiments were integrated into one system. The researchers then developed a device that allowed students to see the water's circulation at a glance. It is intended to enable integrated thinking on evaporation, condensation and precipitation. In addition, a instruction program to guide students using the system has been developed to demonstrate its effectiveness. Employing a quasi-experimental design, the participants were measured on their concepts of evaporation, condensation, and water circulation before and after participation. The findings indicated that the experiment is more effective in changing the concepts of evaporation, condensation, and water circulation than in previous experiments. Also, the optimal conditions for making use of the device were found, and there were no various experimental parameters, such as condensation.

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.

Control of Left Ventricular Assist Device using Artificial Neural Network (인공신경망을 이용한 좌심실보조장치의 제어)

  • 류정우;김훈모;김상현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.260-266
    • /
    • 1996
  • In this paper, we presents neural network identification and control of highly complicated nonlinear Left Ventricular Assist Device(LVAD) system with a pneumatically driven mock circulation system. Generally the LVAD system need to compensate nonlinearities. Hence, it is necessary to apply high performance control techniques. Fortunately, the neural network can be applied to control of a nonlinear dynamic system by learning capability. In this study, we identify the LVAD system with Neural Network Identification. Once the NNI has learned the dynamic model of LVAD system, the other network, called Neural Network Controller(NNC), is designed for control of a LVAD system. The ability and effectiveness of identifying and controlling a LVAD system using the proposed algorithm will be demonstrated by computer simulation.

  • PDF

Urban Development and Social Circulation of Water in Daegu (대구의 도시 발달과 물의 사회적 순환)

  • Choi, Byung Doo
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.1
    • /
    • pp.75-96
    • /
    • 2013
  • This paper is to conceptualize the urban social circulation of water from the social constructivism and political ecology, and to analyze the history of development of social circulation of water, that is, the modernization process of water in Daegu. The development of social circulation system of water in Daegu can be divided into 4 stages, that is, the beginning stage of modernization of water mainly during the period of Japanese colonization, the take-off stage from the 1960s to the mid-1980s, the stage of reflexive modernization from the late 1980s to the 1990s, and that of neoliberalization of water since the 2000s. It can be seen that the development of social circulation system of water in Daegu has contributed the increasing urban population and economic development, especially supporting the spatial expansion of the city and the way of modern way of urban life. But the social circulation system of water in Daegu seems to meet with a lot of problems such as relocation of the water intake station, over-equipment of filtration plants, distrust on tap water, inequality of water use, readjustment of water charge, liquid waste from industrial complexes within the urban area, creative destruction of waterfront environment, and privatization of water.

  • PDF