• Title/Summary/Keyword: System ductility

Search Result 429, Processing Time 0.027 seconds

Evaluation of the Strength Required in Current Seismic Design Code (현행 내진설계 규준의 수평강도 요구에 대한 평가)

  • 한상환;오영훈;이리형
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.281-290
    • /
    • 1997
  • Current seismic design code is based on the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". Because these factors were determined empirically, it is difficult to know how much inelastic behaviors of the structures exhibit. In this study, lateral strength required to maintain target ductility ratio was first calculated from nonlinear dynamic analysis of the single degree of freedom system. At the following step, base shear foeces specified in seismic design code compare with above results. If the base shear force required to maintain target ductility ratio was higher than the code specified one, the lack of required strength should be filled by overstrength and/or redundancy. Therefore, overstrength of moment resisting frame structure will be estimated from the results of push-over analysis.

  • PDF

An Experimental Study on the Strength and Deformation of Reinforced Concrete Columns Strengthed with Epoxy-Bonded Steel Plate (강판접착으로 보강된 철근콘크리트 기둥의 내력 및 변형에 관한 실험적 연구)

  • Kim, Jin-Bai;Lee, Si-Woo;Jang, Hwa-Kyun;Cho, Chul-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.147-155
    • /
    • 1999
  • The purpose of this study is to investigate the strength and ductility of reinforced concrete columns subject to axial load experimentally for several variables of reinforcements and propose foundational research date for reinforcement design of column. In the test a total of eleven specimens, which are all $20{\times}20{\times}60cm$ in size and differently reinforced with steel plate, has been used. The main variables of reinforcement considered in the test are the width of steel plate, the thickness of steel plate. Based on the test results, the effect of the main variables on the strength and ductility of reinforced concrete column have been scrutinized. The strength of reinforced concrete columns are that C-2 series on strengthed with 2mm thickness steel plate are smaller than C-4 series on strengthed with 4mm steel plate. Thick steel plate of reinforced expected utilizer than the other on strength increase and specimens to be large width steel plate of each system are the utiltzer on strength increase. Ductility of C-0 specimen is 1.60, C-2 series is 2.38, C-4 series 2.63 Compare efficiency of ductility increase with each specimens, in narrow width condition (2cm, 4cm) C-2 series is more efficiency, in wide width condition (8cm, 10cm) C-4 series is more efficiency.

  • PDF

Hysteretic behaviors of pile foundation for railway bridges in loess

  • Chen, Xingchong;Zhang, Xiyin;Zhang, Yongliang;Ding, Mingbo;Wang, Yi
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-331
    • /
    • 2020
  • Pile foundation is widely used for railway bridges in loess throughout northwestern China. Modeling of the loess-pile interaction is an essential part for seismic analysis of bridge with pile foundation at seismically active regions. A quasi-static test is carried out to investigate the hysteretic behaviors of pile foundation in collapsible loess. The failure characteristics of the bridge pile-loess system under the cyclic lateral loading are summarized. From the test results, the energy dissipation, stiffness degradation and ductility of the pile foundation in loess are analyzed. Therefore, a bilinear model with stiffness degradation is recommended for the nonlinearity of the bridge pier-pile-loess system. It can be found that the stiffness of the bridge pier-pile-loess system decreases quickly in the initial stage, and then becomes more slowly with the increase of the displacement ductility. The equivalent viscous damping ratio is defined as the ratio of the dissipated energy in one cycle of hysteresis curves and increases with the lateral displacement.

Strength Demand of Hysteretic Energy Dissipating Devices Alternative to Coupling Beams in High-Rise Buildings

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 2014
  • A Reinforced concrete (RC) shear wall system with coupling beams has been known as one of the most promising structural systems for high-rise buildings. However, significantly large flexural and/or shear stress demands induced in the coupling beams require special reinforcement details to avoid their undesirable brittle failure. In order to solve this problem, one of promising candidates is frictional hysteretic energy dissipating devices (HEDDs) as an alternative to the coupling beams. The introduction of frictional HEDDs into a RC shear wall system increases energy dissipation capacity and maintains the frame action after their yielding. This paper investigates the strength demands (specifically yield strength levels) with a maximum allowable ductility of frictional HEDDs based on comparative non-linear time-history analyses of a prototype RC shear wall system with traditional RC coupling beams and frictional HEDDs. Analysis results show that the RC shear wall systems coupled by frictional HEDDs with more than 50% yield strength of the RC coupling beams present better seismic performance compared to the RC shear wall systems with traditional RC coupling beams. This is due to the increased seismic energy dissipation capacity of the frictional HEDD. Also, it is found from the analysis results that the maximum allowable ductility demand of a frictional HEDD should increase as its yield strength decreases.

A new metallic energy dissipation system for steel frame based on negative Poisson's ratio structures

  • Milad Masoodi;Ahmad Ganjali;Hamidreza Irani;Aboozar Mirzakhani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.93-102
    • /
    • 2024
  • Using negative Poisson's ratio materials, an innovative metallic-yielding damper is introduced for the first time in this study. Through the use of ABAQUS commercial software, a nonlinear finite element analysis is conducted to determine the performance of the proposed system. Mild steel plates with elliptical holes are used for these types of dampers, which dissipate energy through an inelastic deformation of the constitutive material. To assess the capability of the proposed damper, nonlinear quasi-static finite element analyses have been conducted on the damper with a variety of geometric parameters. According to the results, the proposed system is ductile and has a high capacity to dissipate energy. The proposed auxetic damper has a specific energy absorption of 910.8 J/kg and a ductility of 33.6. Therefore, this damper can dissipate a large amount of earthquake input energy without buckling by increasing the buckling load of the brace with its ductile behavior. In addition, it was found that by incorporating auxetic dampers in the steel frame, the frame was made harder, stronger, and ductile and its energy absorption increased by 300%.

Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames (철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns (강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.291-298
    • /
    • 2017
  • The objective of the present study is to evaluate the cyclic flexural behavior of a hybrid H-steel-reinforced concrete (HSRC) beam at the connection with a H-steel column. The test parameter investigated was the configuration of dowel bars at the joint region of the HSRC beam. The HSRC beam was designed to have plastic hinge at the end of the H-steel beam rather than the RC beam section near the joint. All specimens showed a considerable ductile behavior without a sudden drop of th applied load, resulting in the displacement ductility ratio exceeding 4.6, although an unexpected premature welding failure occurred at the flanges of H-steel beams connecting to H-steel column. The crack propagation in the RC beam region, flexural strength, and ductility of HSRC beam system were insignificantly affected by the configuration of dowel bars. The flexural strength of HSRC beam system governed by the yielding of H-steel beam could be conservatively evaluated from the assumption of a perfect plasticity state along the section.

Evaluation on Flexural Behavior of Hybrid Beams with Rigid Joint Connecting Steel and Precast Concrete Elements (강재 보-PC 보가 강접합 연결된 하이브리드 보의 휨 거동 평가)

  • Seo, Eun-A;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • A hybrid precast concrete beam system with a simple rigid connection was proposed to compensate the limitations and shortcomings of the conventional bolt connection associated with the H-beams embedded into concrete beams. Three beam specimens with fixed both ends were tested under one-point top cyclic loading to explore the effectiveness of the developed hybrid beam system in transferring externally applied flexure to a column. The main parameter considered was the length ($L_s$) of H-beam, which was selected to be $0.25L_I$, $0.5L_I$, and $1.0L_I$, where $L_I$ is the distance from the support to the point of inflection. All beam specimens showed a better displacement ductility ratio than the reinforced concrete beams with the same longitudinal reinforcement index, indicating that the cyclic load-deflection curve and ductility were insignificantly affected by $L_s$. The continuous strain distribution along the beam length and the prediction of the ultimate load based on the collapse mechanism ascertained the structural adequacy of the developed rigid connection.

Assessment of cyclic behavior of chevron bracing frame system equipped with multi-pipe dampers

  • Behzadfar, Behnam;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.303-313
    • /
    • 2020
  • Spacious experimental and numerical investigation has been conducted by researchers to increase the ductility and energy dissipation of concentrically braced frames. One of the most widely used strategies for increasing ductility and energy dissiption, is the use of energy-absorbing systems. In this regard, the cyclic behavior of a chevron bracing frame system equipped with multi-pipe dampers (CBF-MPD) was investigated through finite element method. The purpose of this study was to evaluate and improve the behavior of the CBF using MPDs. Three-dimensional models of the chevron brace frame were developed via nonlinear finite element method using ABAQUS software. Finite element models included the chevron brace frame and the chevron brace frame equipped with multi-pipe dampers. The chevron brace frame model was selected as the base model for comparing and evaluating the effects of multi-tube dampers. Finite element models were then analyzed under cyclic loading and nonlinear static methods. Validation of the results of the finite element method was performed against the test results. In parametric studies, the influence of the diameter parameter to the thickness (D/t) ratio of the pipe dampers was investigated. The results indicated that the shear capacity of the pipe damper has a significant influence on determining the bracing behavior. Also, the results show that the corresponding displacement with the maximum force in the CBF-MPD compared to the CBF, increased by an average of 2.72 equal. Also, the proper choice for the dimensions of the pipe dampers increased the ductility and energy absorption of the chevron brace frame.

Torsional Behavior of Reinforced Concrete Multi-Story Building under Seismic Loading

  • Hong, Sung-Gul;Moritz, Alex P.;Kim, NamHee
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.314-321
    • /
    • 2000
  • Excessive torsional behavior of asymmetric building structures is observed to be the main cause of the poor seismic performance. Concepts of current design provisions for torsion are based on the assumption that the strength of the lateral load resisting elements can be adjusted without changing their stiffness. This paper investigates inelastic torsional effects of multi-story high rise residential building in Korea on increase of strength demand and ductility of members using some methods published in literature. The methods analyze the reduction of strength and member ductility resulting from torsional mechanisms. This study shows that use of these concepts control inelastic torsion during preliminary seismic design of multi-story building of irregular plans.

  • PDF