• 제목/요약/키워드: System condensation

검색결과 532건 처리시간 0.028초

MATLAB을 이용한 Condensation 알고리즘의 자동 코드 구현 (Development of Automatic Code Generation of Condensation Algorithm using MATLAB)

  • 이양원
    • 한국항행학회논문지
    • /
    • 제14권5호
    • /
    • pp.618-624
    • /
    • 2010
  • 본 논문에서는 다중물체를 추적하기 위해서 적합한 것으로 알려진 condensation 알고리즘의 자동 코드 발생기를 연구한 결과를 보인 것이다. 일반적으로 condensation 알고리즘은 일반인이 구현하기 매우 어려워 실제 유비쿼터스 상황인지를 위하여 필요한 기술임에도 불구하고 널리 이용되지 못하고 있다. 본 논문에서는 이 같은 문제점을 개선하기 위하여 시스템 다이나믹스 모델과 측정 모델이 주어지면 요구하는 성능을 만족하는 condensation algorithm이 내장된 필터를 자동으로 만들어주는 MATLAB 코드를 발생하도록 설계하였다. 일단 발생된 MATLAB 코드는 C, C++ 언어 등으로 변환되므로 원하는 소스를 얻을 수 있다.

IMPROVEMENT OF CUPID CODE FOR SIMULATING FILMWISE STEAM CONDENSATION IN THE PRESENCE OF NONCONDENSABLE GASES

  • LEE, JEHEE;PARK, GOON-CHERL;CHO, HYOUNG KYU
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.567-578
    • /
    • 2015
  • In a nuclear reactor containment, wall condensation forms with noncondensable gases and their accumulation near the condensate film leads to a significant reduction in heat transfer. In the framework of nuclear reactor safety, the film condensation in the presence of noncondensable gases is of high relevance with regards to safety concerns as it is closely associated with peak pressure predictions for containment integrity and the performance of components installed for containment cooling in accident conditions. In the present study, CUPID code, which has been developed by KAERI for the analysis of transient two-phase flows in nuclear reactor components, is improved for simulating film condensation in the presence of noncondensable gases. In order to evaluate the condensate heat transfer accurately in a large system using the two-fluid model, a mass diffusion model, a liquid film model, and a wall film condensation model were implemented into CUPID. For the condensation simulation, a wall function approach with a heat/mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model, and then introduces the simulation result using the improved CUPID for a conceptual condensation problem in a large system.

시스템 축소기법이 적용된 역섭동법을 이용한 손상탐지 (System Condensation Technique-Based Inverse Perturbation Method of Damage Detection)

  • 최영재;이우식
    • 한국항공우주학회지
    • /
    • 제30권7호
    • /
    • pp.98-104
    • /
    • 2002
  • 본 연구에서는 역섭동법을 이용한 손상탐지의 효율을 개선하는 목적으로 시스템 축소기법을 사용하였다. 이 방법은 손상탐지의 미측정 자유도를 측정된 자유도로 변환하여 역섭동법의 계산효율이 향상되는 장점이 있으나, 부정확한 자유도의 변환으로 수치적인 안정성이 저하될 수 있다. 따라서 자유도 변환식을 수치해법 과정에서 반복적으로 개선하는 방법과, 매우 정확한 accelerated improved reduced system (AIRS) 축소법의 사용으로 역섭동법의 수치적 불안정성을 해결하였다.

Embedded System for Automatic Condensation Control of the Car

  • Lee, Dmitriy;Bae, Yong-Wook;Lee, Neung-Ho;Seo, Hee-Don
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.21-27
    • /
    • 2012
  • In this study, we designed an embedded system for automatic condensation control(ESCC) of the car. This system heats the car glasses as and when it is needed that makes driving safer and convenient. The system was built on an ATmega128L central processing unit(CPU), using high-performance electrically erasable programmable read-only memory(EEPROM) complex programmable logic device(CPLD) ATF1504AS, using which an ESCC algorithm has been proposed. The source code was written in C language. The algorithm of work was written using the dew-point table. This system not only clears the condensation on the glass but also averts condensation. The designed ESCC system begins working once the input information comes close to the dew-point table information. This device enables a wider field of view, thereby increasing safety.

리본형태의 근관에서의 열연화 근관 충전법의 비교 : 근관 충전된 gutta-percha의 무게 (COMPARISON OF WARM GUTTA-PERCHA CONDENSATION TECHNIQUES IN RIBBON SHAPED CANAL : WEIGHT OF FILLED GUTTA-PERCHA)

  • 김현희;조경모;김진우
    • Restorative Dentistry and Endodontics
    • /
    • 제27권3호
    • /
    • pp.277-283
    • /
    • 2002
  • The purpose of this study is to evaluate the two warm gutta-percha filling techniques by measuring the weight changes of resin blocks before and after canal filling in ribbon shaped canal. Simulated ribbon shaped root canals in 30 transparent resin blocks were instrumented to #40 using .06 taper Profile. 15 resin blocks were obturated with gutta-percha using cold lateral condensation. Warm lateral condensation using the Endotec II was then accomplished on the same 15 blocks. Another 15 resin blocks were obturated using the System B. All canals were obturated without sealer. The resin blocks were weighed after canal preparation and after each subsequent obturation, and then weight changes of the resin blocks were calculated The results were as follows. 1. Warm lateral condensation using Endotec II and continuous wave of condensation using System B produced a denser obturation of gutta-percha compared with conventional cold lateral condensation (p<0.01). 2. There was no significant difference between warm lateral condensation and continuous wave condensation. In conclusion, the warm gutta-percha condensation techniques like warm lateral condensation and continuous wave condensation can be expected to bring favorable canal obturation results in ribbon shaped canals.

An Accelerated Inverse Perturbation Method for Structural Damage Identification

  • Park, Young-Jae;Lee, Usik
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.637-646
    • /
    • 2003
  • In the previous study, the inverse perturbation method was used to identify structural damages. Because all unmeasured DOFs were considered as unknown variables, considerable computational effort was required to obtain reliable results. Thus, in the present study, a system condensation method is used to transform the unmeasured DOFs into the measured DOFs, which eliminates the remaining unmeasured DOFs to improve computational efficiency. However, there may still arise a numerically ill-conditioned problem, if the system condensation is not adequate for numerical Programming or if the system condensation is not recalibrated with respect to the structural changes. This numerical problem is resolved in the present study by adopting more accurate accelerated improved reduced system (AIRS) as well as by updating the transformation matrix at every step. The criterion on the required accuracy of the condensation method is also proposed. Finally, numerical verification results of the present accelerated inverse perturbation method (AIPM) are presented.

IMPROVEMENTS OF CONDENSATION HEAT TRANSFER MODELS IN MARS CODE FOR LAMINAR FLOW IN PRESENCE OF NON-CONDENSABLE GAS

  • Bang, Young-Suk;Chun, Ji-Ran;Chung, Bub-Dong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1015-1024
    • /
    • 2009
  • The presence of a non-condensable gas can considerably reduce the level of condensation heat transfer. The non-condensable gas effect is a primary concern in some passive systems used in advanced design concepts, such as the Passive Residual Heat Removal System (PRHRS) of the System-integrated Modular Advanced ReacTor (SMART) and the Passive Containment Cooling System (PCCS) of the Simplified Boiling Water Reactor (SBWR). This study examined the capability of the Multi-dimensional Analysis of Reactor Safety (MARS) code to predict condensation heat transfer in a vertical tube containing a non-condensable gas. Five experiments were simulated to evaluate the MARS code. The results of the simulations showed that the MARS code overestimated the condensation heat transfer coefficient compared to the experimental data. In particular, in small-diameter cases, the MARS predictions showed significant differences from the measured data, and the condensation heat transfer coefficient behavior along the tube did not match the experimental data. A new method for calculating condensation heat transfer coefficient was incorporated in MARS that considers the interfacial shear stress as well as flow condition determination criterion. The predictions were improved by using the new condensation model.

TDR을 이용한 중앙집중형 하이브리드 환기시스템의 결로방지 성능 평가 (Evaluation of Condensation Prevention for Centralized Hybrid Ventilation System Using TDR)

  • 김유민;이종은;최경석;이용준;강재식
    • KIEAE Journal
    • /
    • 제15권6호
    • /
    • pp.81-86
    • /
    • 2015
  • Purpose: Condensation in the apartment housing is one of the most significant defects and complaints for condensation are rapidly increasing according to the growing interest in residential environment. Korea government established a regulation for reducing condensation in the apartment housing and TDR is adapted as a standard. However prevention of condensation depend on improving the performance of building envelop has limitation because of the increase of the cost. Centralized Hybrid ventilation system is suggested to prevent condensation. Method: Field measurement was conducted to verify the ventilation rate of the ventilation system. Based on the measurement, air network and CFD simulation was conducted to analyze ventilation rate for each room. Surface temperature was calculated by regulated TDR according to the regions and surfaces. The performance of condensation prevention was evaluated by the ventilation rate and surface temperature. Result: In the results, it was found that condensation was prevented in more than 90% of households by the centralized hybrid ventilation system which provided 0.19 ~ 0.81ACH for each room.

능동 동조질량감쇠의 고층빌딩 해석을 위한 동적압축법 (A Dynamic Condensation for Tall Buildings with Active Tuned Mass Damper)

  • 정양기
    • 한국지진공학회논문집
    • /
    • 제10권2호
    • /
    • pp.21-29
    • /
    • 2006
  • 자유도 수가 많은 고층 구조물의 해석하기 위해 모든 층에 sensors를 설치하는 것은 비 실용적이다. 따라서 이러한 문제를 해결하기 위해 "reduced-order control" 방법이 소개되었다. 본 논문은 동적압축법(dynamic condensation method)이 제안되었다. 이 압축법은 반복법으로 "Guyan condensation"의 initial approximation을 적용하였다. 본 논문에서 제시된 동적압축법(dynamic condensation)은 원하는 값을 얻을 때까지 지속적으로 updated가 되며, 결과는 기존의 "Guyan condensation"보다 정확한 결과를 나타내었다. 또한 "eigenvalue shifting technique"을 적용하여 iteration으로 계산되는 시간을 크게 단축하였다. "Reduced-order system"을 도입하기 위한 두가지 schemes이 토의되었다. 제시된 동적압축법 효과의 증명을 위해 능동 동조질량감쇠 고층빌딩의 수치 해석이 토의되었고, 단지 두 번의 반복(iterations)을 통한 결과는 매우 정확한 것으로 나타났다.

열연화시킨 근관충전방법에 따른 근단폐쇄성에 관한 연구 (A COMPARISON OF THE APICAL SEALING ABILITY OF OBTURATION TECHNIQUES BY THERMALLY SOFTENED GUTTA PERCHA)

  • 백승호
    • Restorative Dentistry and Endodontics
    • /
    • 제23권2호
    • /
    • pp.607-617
    • /
    • 1998
  • The purpose of this study was to evaluate the apical sealing ability of lateral condensation method, vertical condensation method, and MicroSeal obturation system. Sixty-four extracted anterior teeth were instrumented to #40 using Profile. Three groups of 20 teeth were obturated by lateral condensation technique, vertical condensation technique, and and MicroSeal obturation system. Control group were not obturated. Teeth were immersed in resorcinol-formaldehyde resin for 5 days at $4^{\circ}C$, and the resin was allowed to polymerize completely for 4 days at room temperature. Teeth were ground horizontally at 1,5mm(level 1), 2.5mm(level 2), and 3.5mm(level 3) from the anatomic apex and examined with a stereomicroscope at X40 magnification. The photographs were taken a at X40 magnification of the filling in each level and scanned. The leakage area, which was filled with the resin, was measured at each of the three levels. Each ratio of leakage was evaluated by calculating the ratio of thearea of the resin to the total area of the canal and was analyzed statistically. The results were as followed: 1. Vertical condensation group had significantly higher percentage of the area which was obturated by gutta percha than other two technique at each level. 2. At the level 1, there was the greatest leakage in the lateral condensation group, but there was no statistically significant(P>0.05) 3. At the level 2, there was the least leakage in the MicroSeal group, and the most leakage in the lateral condensation group. There was statistically significant difference between the MicroSeal group and the lateral condensation group(P<0.05). 4. At the level 3, there was least leakage in the vertical condensation group, and the most leakage in the lateral condensation group. There was statistically significant difference between the vertical condensation group and the lateral condensation group(P<0.05).

  • PDF