• Title/Summary/Keyword: System coefficient of performance

Search Result 1,446, Processing Time 0.038 seconds

A Study on the Job Stress and Job Satisfaction of Call Center Employees (콜센터 종사자의 직무스트레스와 직무만족도에 관한 연구)

  • Shin, Hye-Young;Kim, Oh-Woo
    • Journal of Distribution Science
    • /
    • v.14 no.5
    • /
    • pp.91-96
    • /
    • 2016
  • Purpose - Although various studies have been conducted on the stress of service employees, there are still lack of studies regarding job stress and job satisfaction of call center workers. Especially there are quite few studies on the job stress according to employment type. This study focused on job stress and job satisfaction for call center employees and the correlation between the two factors and aimed to provide basic materials for seeking for the plans to reduce job stress and improve job satisfaction. Research design, data, and methodology - Frequency, percentage, and mean value were calculated through descriptive statistics in order to find out demographic characteristics, level of job stress, and job satisfaction. Differences in job stress according to employment type were calculated by using one-way ANOVA. Correlation between job stress and job satisfaction were identified through empirical analysis with Pearson's correlation coefficient. 150 materials were used for final analysis. The collected materials were analyzed to get statistics by using SPSS 20. Results - First, as for the job stress of call center workers, overall mean value was 2.54 in 4-point scales. Among the six sub-factors, job demands had the highest score, which was 2.67. Second, as for the job stress according to employment type, others showed higher score than mean value followed by contract job and full-time job in that order, in terms of job insecurity and organizational system. In terms of inappropriate remuneration, contract job showed higher score than mean value followed by others and full-time job. Third, as for the satisfaction with job, the mean value was 2.37 in 4-point scale and "very much satisfied" was only 3.3%. Lastly, in terms of job stress and job satisfaction, all sub-factors except for job demands showed significant correlation. The more job stress increased, the more job satisfaction decreased. Conclusions - First, as a result of analyzing job stress according to the employment type of call center workers, job stress increased more when the employment type was not full-time. Therefore, it was assumed that self-rescue efforts should be followed for effective employment management of call center business where contract employment takes most part as well as efforts to transfer them to full-time job. Second, decrease in job satisfaction of call center workers may affect the performance of an organization as well as service quality of the company providing the service. Therefore, various supports are required to decrease job stress and increase job satisfaction for call center workers through the expansion of rest area or break time. Third, I could recognize that there were lack of academic research on call center business in the whole service industry. Therefore, further research should be conducted more actively in the future. In particular, this study has special significance in the aspect that there were few studies on the job stress of call center workers according to employment type.

PM2.5 Simulations for the Seoul Metropolitan Area: (III) Application of the Modeled and Observed PM2.5 Ratio on the Contribution Estimation (수도권 초미세먼지 농도모사: (III) 관측농도 대비 모사농도 비율 적용에 따른 기여도 변화 검토)

  • Bae, Changhan;Yoo, Chul;Kim, Byeong-Uk;Kim, Hyun Cheol;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.445-457
    • /
    • 2017
  • In this study, we developed an approach to better account for uncertainties in estimated contributions from fine particulate matter ($PM_{2.5}$) modeling. Our approach computes a Concentration Correction Factor (CCF) which is a ratio of observed concentrations to baseline model concentrations. We multiply modeled direct contribution estimates with CCF to obtain revised contributions. Overall, the modeling system showed reasonably good performance, correlation coefficient R of 0.82 and normalized mean bias of 2%, although the model underestimated some PM species concentrations. We also noticed that model biases vary seasonally. We compared contribution estimates of major source sectors before and after applying CCFs. We observed that different source sectors showed variable magnitudes of sensitivities to the CCF application. For example, the total primary $PM_{2.5}$ contribution was increased $2.4{\mu}g/m^3$ or 63% after the CCF application. Out of a $2.4{\mu}g/m^3$ increment, line sources and area source made up $1.3{\mu}g/m^3$ and $0.9{\mu}g/m^3$ which is 92% of the total contribution changes. We postulated two major reasons for variations in estimated contributions after the CCF application: (1) monthly variability of unadjusted contributions due to emission source characteristics and (2) physico-chemical differences in environmental conditions that emitted precursors undergo. Since emissions-to-$PM_{2.5}$ concentration conversion rate is an important piece of information to prioritize control strategy, we examined the effects of CCF application on the estimated conversion rates. We found that the application of CCFs can alter the rank of conversion efficiencies of source sectors. Finally, we discussed caveats of our current approach such as no consideration of ion neutralization which warrants further studies.

The Emotional Intelligence Effects on Foreign LCs' Self-Efficacy and Job Stress (외국계 생명보험 설계사의 감성지능이 직무스트레스에 미치는 영향 : 자기효능감의 매개효과를 중심으로)

  • Jung, Kwang-Jin;Park, Sang-Beom
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.5
    • /
    • pp.93-104
    • /
    • 2018
  • Purpose - This study is to investigate the relationship among emotional intelligence, self-efficacy and job stress of foreign life insurance consultants focusing on the mediating effect of self-efficacy. Regarding job security, in general foreign life insurance companies in Korea have more severe working conditions in terms of required contract performance. For foreign life insurance consultants, they are assumed to need higher level of emotional intelligence and self efficacy to meet the conditions. In this study, focus is cast on these aspects. Research design, data, and methodology - Basically the research is conducted upon questionnaires responded by foreign life insurance consultants. That is, data are collected from 255 sample of insurance consultants who work for a foreign owned life insurance company. The Questionnaire measure the level of emotional intelligence, self-efficacy and job stress of insurance consultants. The data are analyzed using pearson's correlation coefficient and hierarchical multiple regression, descriptive statistics, t-test, ANOVA, Durbin-Watson test. Results - The general characteristics of respondents are gender, age, marital status, education level, income monthly, career length, change jobs no, working day per week, call no. per week, meeting no. with client per week, contract regularity, contract no. per month and cancellation contract per year. The mean of emotional intelligence is 2.63, self-efficacy is 3.44 and job stress is 2.20. Emotional intelligence is composed with mean value of self emotion appraisal(3.93), other's emotion appraisal(3.78), regulation of emotion(3.29) and use of emotion(3.52). The mean of self efficacy is composed with mean value of self-confidence(3.41), self-regulated efficacy(3.59) and preference task difficulty(3.30). The job stress is composed with mean value of job requirement(2.61), lack of job autonomy(1.99), conflict of personal relations(1.99), job instability(2.38), organizational system(2.19) and inappropriate compensation(2.07). There is a significant positive correlation between emotional intelligence and self-efficacy. The emotional intelligence and self-efficacy are significantly negative correlation with job stress. The self-efficacy is showed a mediating variable between emotional intelligence and job stress. Conclusions - To decrease job stress level, foreign life insurance company should find the factors to improve the emotional intelligence and self-efficacy of life insurance consultants, and develop appropriate plans using a mediating role of self- efficacy between emotional intelligence and job stress.

Estimation of Inbreeding Coefficients and Effective Population Size in Breeding Bulls of Hanwoo (Korean Cattle) (한우 씨수소의 근교계수와 유효집단크기의 추정)

  • Dang, Chang-Gwon;Lee, Jung-Jae;Kim, Nae-Soo
    • Journal of Animal Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.297-302
    • /
    • 2011
  • This study was carried out to estimate average inbreeding coefficients, relatedness and effective population size of breeding bulls and to suggest optimal alternatives on problems of current Hanwoo improvement system. Data on proven and young bulls were obtained from 1,128 heads of Livestock Improvement Main Center from 1983 to 2008. Pedigree information on proven and young bulls was obtained from 3,760 heads of Korea Animal Improvement Association. Average inbreeding coefficients and average relatedness of proven and young bulls were estimated at the range of 0.04-0.07%, 0.10-6.82%, respectively. Effective population size was estimated for 220 heads from the average rate of inbreeding of last 26 years. Average inbreeding coefficient is rising rapidly for the last two years as well as average relatedness. Effective population size was estimated for 47 heads for the last five years. These results suggest that selection criteria of proven bulls should include not only genetic evaluation of carcass performance from progeny-test, but also inbreeding and relationship coefficients, in order to maintain genetic variability of Hanwoo. In addition, effective population size should be increased by increasing the number of proven bulls.

Models of Wastewater Treatment by Rotating Discs (회전원판접촉법(回轉圓板接觸法)에 의한 폐수처리(廢水處理)의 모형(模型)에 관한 연구(研究))

  • Chung, Tai Hak;Park, Chung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.39-46
    • /
    • 1982
  • A model of substrate removal by rotating discs has been developed for a better understanding of the process, and the performance of the system has been evaluated under steady and unsteady state. The model was constructed based upon mass transfer of the substrate from the bulk solution to the biofilm and a simultaneous removal of the substrate by the biomass. The model is composed of a few sets of differential equations representing mass balance within the elements of a liquid film and a biofilm, and in the bulk solution. Substrate removal efficiency of the process is largely dependent on a diffusion coefficient of the substrate within the biofilm and a maximum rate of substrate removal of the biomass. The efficiency is affected to a greater extent when the substrate concentration is low and the maximum substrate removal rate is high. The efficiency increases proportionally with increasing film depth when the biofilm is shallow, however, the rate of increase gradually decreases with an increase of the film depth. As the film reaches a limiting depth, the efficiency remains constant. Unlike the steady state, the effluent quality is affected by the tank volume under dynamic state. Increasing tank volume decreases peak concentration of the effluent under peak loading. Additional tank volume provides a buffer capacitya.gainst a peak loading and the holding tank behaves like an equalization tank.

  • PDF

Determination of Hot Air Drying Characteristics of Squash (Cucurbita spp.) Slices

  • Hong, Soon-jung;Lee, Dong Young;Park, Jeong Gil;Mo, Changyeun;Lee, Seung Hyun
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.314-322
    • /
    • 2017
  • Purpose: This study was conducted to investigate the hot air drying characteristics of squash slices depending on the drying conditions (input air velocity, input air temperature, and sample thickness). Methods: The developed drying system was equipped with a controllable air blower and electric finned heater, drying chamber, and ventilation fan. Squash (summer squash called Korean zucchini) samples were cut into slices of two different thicknesses (5 and 10 mm). These were then dried at two different input air temperatures (60 and $70^{\circ}C$) and air velocities (5 and 7 m/s). Six well-known drying models were tested to describe the experimental drying data. A non-linear regression analysis was applied to determine model constants and statistical indices such as the coefficient of determination ($R^2$), reduced chi-square (${\chi}^2$), and root mean square error (RMSE). In addition, the effective moisture diffusivity ($D_{eff}$) was estimated based on the curve of ln(MR) versus drying time. Results: The results clearly showed that drying time decreased with an increase in input air temperature. Slice thickness also affected the drying time. Air velocity had a greater influence on drying time at $70^{\circ}C$ than at $60^{\circ}C$ for both thicknesses. All drying models accurately described the drying curve of squash slices regardless of slice thickness and drying conditions; the Modified Henderson and Pabis model had the best performance with the highest R2 and the lowest RMSE values. The effective moisture diffusivity ($D_{eff}$) changes, obtained from Fick's diffusion method, were between $1.67{\times}10^{-10}$ and $7.01{\times}10^{-10}m^2/s$. The moisture diffusivity was increased with an increase in input air temperature, velocity, and thickness. Conclusions: The drying time of squash slices varied depending on input temperature, velocity, and thickness of slices. The further study is necessary to figure out optimal drying condition for squash slices with retaining its original quality.

A Study on the Thermo-Mechanical Stress of MEMS Device Packages (마이크로 머신(MEMS) 소자 패키지의 열응력에 대한 연구)

  • Jeon, U-Seok;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.744-750
    • /
    • 1998
  • Unlike common device, MEMS(micro-electro-mechanical system) device consists of very small mechanical structures which determine the performance of the device. Because of its small mechanical structure inside. MEMS device is very sensitive to thermal stress caused by CTE(coefficient of thermal expansion) mismatch between its components. Therefore, its characteristics are affected by material properties. process temperature. and dimensions of each layer such as chip, adhesive and substrate. In this study. we investigated the change of the thermal stress in the chip attached to a substrate. With computer-aided finite element method (FEM), the computer simulation of the thermal stress was conducted on variables such as bonding material, process temperature, bonding layer thickness and die size. The commercial simulation program, ABAQUS ver5.6, was used. Subsequently 3-layer test samples were fabricated, and their degree of bending were measured by 3-D coordinate measuring machine. The experimental results were in good agreement with the simulation results. This study shows that the bonding layer could be the source of stress or act as the buffer layer for stress according to its elastic modulus and CTE. Solder adhesive layer was the source of stress due to its high elastic modulus, therefore high compressive stress was developed in the chip. And the maximum tensile stress was developed in the adhesive layer. On the other hand, polymer adhesive layer with low elastic modulus acted as buffer layer, and resulted in lower compressive stress. The maximum tensile stress was developed in the substrate.

  • PDF

Improvement of Analysis Methods for Fatty Acids in Infant Formula by Gas Chromatography Flame-Ionization Detector (GC-FID를 이용한 조제유류 중 지방산 분석법 개선 연구)

  • Hwang, Keum Hee;Choi, Won Hee;Hu, Soo Jung;Lee, Hye young;Hwang, Kyung Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.1
    • /
    • pp.34-41
    • /
    • 2021
  • The purpose of this research is to improve analysis methods of determining the contents of fatty acids in infant formulas and follow-up formulas. A gas chromatography (GC) method was performed on a GC system coupled to flame ionization detector, with a fused silica capillary column (SP2560, 100 m×0.25 mm, 0.20 ㎛). The method was validated using standard reference material (SRM, NIST 1849a). Performance parameters for method validation such as specificity, linearity, limits of detection (LOD) and quantification (LOQ), accuracy and precision were examined. The linearity of standard solution with correlation coefficient was higher than 0.999 in the range of 0.1-5 mg/mL. The LOD and LOQ were 0.01-0.06 mg/mL and 0.03-0.2 mg/mL, respectively. The recovery using standard reference material was confirmed and the precision was found to be between 0.8% and 2.9% relative standard deviation (RSD). Optimized methods were applied in sample analysis to verify the reliability. All the tested products had acceptable contents of fatty acids compared with component specification for nutrition labeling. The result of this research will provide efficient experimental information and strengthen the management of nutrients in infant formula and follow-up formula.

Improvement of Durability and Change of Pore Structure for Concrete Surface by the Penetrative Surface Protection Agent (함침계 표면보호제에 의한 콘크리트 표면의 세공구조 변화 및 내구성 향상)

  • Kang, Suk-Pyo;Kim, Jung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.125-132
    • /
    • 2006
  • Recently, surface finishing and protection materials were developed to restore performance of the deteriorated concrete and inhibiting corrosion of the reinforcing-bar. For this purpose, surface protection agent as well as coatings are used. Coatings have the advantage of low Permeability of $CO_2,\;SO_2$ and water. However, for coatings such as epoxy, urethane and acryl, long-term adhesive strength is reduced and the formed membrane of those is blistered by various causes. Also when organic coatings are applied to the wet surface of concrete, those have a problem with adhesion. On the other hand, surface protection agent penetrates into pore structure in concrete through capillary and cm make a dense micro structure in concrete as a result of filling effect. Furthermore, the chemical reaction between silicate from surface protection agent and cement hydrates can also make a additional hydration product which is ideally compatible with concrete body. The aim of this study is to examine the effect of penetrative surface protection agent(SPA) by evaluating several concrete durability characteristics. The results show that the concrete penetrated surface protection agent exhibited higher durability characteristics for instance, carbonation velocity coefficient, resistance to chemical attack and chloride ion penetration than the plain concrete. These results due to formation of a discontinuous macro-pore system which inhibits deterioration factors of concrete by changed the pore structure(porosity and pore size distributions) of the concrete penetrated surface protection agent.

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.