• Title/Summary/Keyword: System coefficient of performance

Search Result 1,454, Processing Time 0.028 seconds

Analysis of Relationship between Mixed Venous PO2 and Status of Cardiac Performance with Hemodynamic Values after Correction of Cyanotic Congenital Heart Disease (청색심기형 교정술후 혼합정맥혈 산소분압과 심근상태 및 혈류역학치와의 상관관계 분석)

  • An, Jae-Ho;Kim, Yong-Jin
    • Journal of Chest Surgery
    • /
    • v.22 no.2
    • /
    • pp.212-219
    • /
    • 1989
  • We utilized pulmonary artery pressure monitoring system in risky patients for preventing the postoperative pulmonary hypertensive crisis and for sampling the mixed venous blood. And this mixed venous blood oxygen saturation [MVSO2] or partial pressure [MVPO2]tells us many meaningful patients state. We selected 59 cyanotic congenital heart diseased patients, who were operated in our hospital from Nov. 1987 to Oct. 1988, in the Department of Thoracic and Cardiovascular Surgery, Seoul National University Children\ulcorner Hospital, who had pulmonary artery pressure monitoring catheter and who made us know their mixed venous oxygen condition. We found that there was no close relationship between MVPO2 and Cardiac Index [C.I.] during early postoperative period, but on the first and second day after operation the correlation coefficient was increased as r=0.35[p=0.008], r=0.78[p=0.0001]. So we concluded that the correlation between MVPO2 and C.I. was more reliable with time going as hemodynamic stabilization. And we experienced no survivors whose MVPO2 was under 20 torr, but that was not the only factor for death. From these results, we conclude that we can consider the MVPO2 [or MVSO2] representing C.I. after stabilized postoperative condition of the open heart surgery patients, but during early postoperative period, in addition to this MVPO2, we should do also apply other parameter such as urine output, arterial blood pressure, left atrial pressure and pulmonary arterial pressure for exact estimation of the patients status.

  • PDF

Dynamic Characteristics and Instability of Submerged Plain Journal Bearings in accordance with the Cavitation Model (공동현상 모델에 따른 침수형 평면 저널베어링의 동특성 및 회전 안정성에 대한 연구)

  • Moonho Choi
    • Tribology and Lubricants
    • /
    • v.39 no.4
    • /
    • pp.139-147
    • /
    • 2023
  • Cavitation phenomena observed during the operation of a submerged plain journal bearing (PJB) can affect bearing performance parameters such as dynamic coefficients, whirl frequency ratio, and critical mass. This study presents numerical solutions of the Reynolds equation for steadily and dynamically loaded submerged PJBs with half-Sommerfeld (HS), Reynolds, and Jakobsson-Floberg-Olsson (JFO) cavitation models when the supply pressure is larger or equal to the cavitation pressure. The loads at various eccentricity ratios are identical; however, the attitude angle is approximately 6% smaller when the eccentricity ratio is between 0.2 and 0.7 and the JFO model is used, compared to that when the Reynolds model is used. Dynamic coefficients obtained with the HS and Reynolds model show good agreement with each other, except for kxz, which is sensitive to changes in the force normal to the rotor weight, and is attributed to the difference in the attitude angle obtained with each cavitation model. Stiffness coefficients are determined using the pressure distribution in the film, and therefore, when the JFO model is used, the direct stiffness coefficients are affected and show opposite signs for most eccentricity ratios. The mass-conservative JFO model can predict at least a 30% smaller critical mass compared to that using the HS and Reynolds models. Thus, the instability analysis results can change based on the cavitation model used in a submerged PJB. The results of this research indicate that the JFO model should be used when designing a rotor system supported by submerged PJBs.

Radiology Department Infection Control According to Radiography Frequency and Disinfection Period (촬영 빈도수 및 소독 주기에 따른 영상의학과 감염 관리)

  • Lee, Jae-Seung;Jeong, Kyu-Hwan;Kim, Gyoung-Hee;Im, In-Chul;Kweon, Dae-Cheol;Goo, Eun-Hoe;Dong, Kyung-Rae;Chung, Woon-Kwan
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • Questionnaires were distributed to Radiology departments at hospitals with 300 sickbeds throughout the Pohang region of North Gyeongsang Province concerning awareness and performance levels of infection control. The investigation included measurements of the pollution levels of imaging equipment and assistive apparatuses in order to prepare a plan for the activation of prevention and management of hospital infections. The survey was designed to question respondents in regards to personal data, infection management prevention education, and infection management guidelines. The ATP Public Heath Monitering System was used to measure seven items for pollution levels of imaging equipment and assistive apparatuses in the Radiology Department. Data was analysed using SPSS version 12.0 for paired t-test and Pearson coefficient with a statistically significant level of 0.05. The results of the survey showed a total awareness level of infection management prevention education averaged at $3.73{\pm}0.64$ and performance levels resulted at $3.39{\pm}0.83$ which were statistically significant (p = 0.01). Also the measurements of pollution levels for equipment with high patient contact showed a Pearson Coefficient of over 0.5 implying a focus on pathogenic bacterium. There was no statistical significance with the frequency of imaging (p < 0.05). Therefore for general hospitals with high patient contact, there is a need to supply analyzing equipment for real time monitoring and the implementation of disinfection management that uses a Ministry of Health and Welfare approved antiseptic solution twice every minute.

Analysis of the Impact of Satellite Remote Sensing Information on the Prediction Performance of Ungauged Basin Stream Flow Using Data-driven Models (인공위성 원격 탐사 정보가 자료 기반 모형의 미계측 유역 하천유출 예측성능에 미치는 영향 분석)

  • Seo, Jiyu;Jung, Haeun;Won, Jeongeun;Choi, Sijung;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.147-159
    • /
    • 2024
  • Lack of streamflow observations makes model calibration difficult and limits model performance improvement. Satellite-based remote sensing products offer a new alternative as they can be actively utilized to obtain hydrological data. Recently, several studies have shown that artificial intelligence-based solutions are more appropriate than traditional conceptual and physical models. In this study, a data-driven approach combining various recurrent neural networks and decision tree-based algorithms is proposed, and the utilization of satellite remote sensing information for AI training is investigated. The satellite imagery used in this study is from MODIS and SMAP. The proposed approach is validated using publicly available data from 25 watersheds. Inspired by the traditional regionalization approach, a strategy is adopted to learn one data-driven model by integrating data from all basins, and the potential of the proposed approach is evaluated by using a leave-one-out cross-validation regionalization setting to predict streamflow from different basins with one model. The GRU + Light GBM model was found to be a suitable model combination for target basins and showed good streamflow prediction performance in ungauged basins (The average model efficiency coefficient for predicting daily streamflow in 25 ungauged basins is 0.7187) except for the period when streamflow is very small. The influence of satellite remote sensing information was found to be up to 10%, with the additional application of satellite information having a greater impact on streamflow prediction during low or dry seasons than during wet or normal seasons.

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Modeling of flat otter boards motion in three dimensional space (평판형 전개판의 3차원 운동 모델링)

  • Choe, Moo-Youl;Lee, Chun-Woo;Lee, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.1
    • /
    • pp.49-61
    • /
    • 2007
  • Otter boards in the trawl are the one of essential equipments for the net mouth to be spread to the horizontal direction. Its performance should be considered in the light of the spreading force to the drag and the stability of towing in the water. Up to the present, studies of the otter boards have focused mainly on the drag and lift force, but not on the stability of otter boards movement in 3 dimensional space. In this study, the otter board is regarded as a rigid body, which has six degrees of freedom motion in three dimensional coordinate system. The forces acting on the otter boards are the underwater weight, the resistance of drag and spread forces and the tension on the warps and otter pendants. The equations of forces were derived and substituted into the governing equations of 6 degrees of freedom motion, then the second order of differential equations to the otter boards were established. For the stable numerical integration of this system, Backward Euler one of implicit methods was used. From the results of the numerical calculation, graphic simulation was carried out. The simulations were conducted for 3 types of otter boards having same area with different aspect ratio(${\lambda}=0.5,\;1.0,\;1.5$). The tested gear was mid-water trawl and the towing speed was 4k't. The length of warp was 350m and all conditions were same to each otter board. The results of this study are like this; First, the otter boards of ${\lambda}=1.0$ showed the longest spread distance, and the ${\lambda}=0.5$ showed the shorted spread distance. Second, the otter boards of ${\lambda}=1.0$ and 1.5 showed the upright at the towing speed of 4k't, but the one of ${\lambda}=0.5$ heeled outside. Third, the yawing angles of three otter boards were similar after 100 seconds with the small oscillation. Fourth, it was revealed that the net height and width are affected by the characteristics of otter boards such as the lift coefficient.

Clinical implementation of PerFRACTIONTM for pre-treatment patient-specific quality assurance

  • Sang-Won Kang;Boram Lee;Changhoon Song;Keun-Yong Eeom;Bum-Sup Jang;In Ah Kim;Jae-Sung Kim;Jin-Beom Chung;Seonghee Kang;Woong Cho;Dong-Suk Shin;Jin-Young Kim;Minsoo Chun
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.516-525
    • /
    • 2022
  • This study is to assess the clinical use of commercial PerFRACTIONTM for patient-specific quality assurance of volumetric-modulated arc therapy. Forty-six pretreatment verification plans for patients treated using a TrueBeam STx linear accelerator for lesions in various treatment sites such as brain, head and neck (H&N), prostate, and lung were included in this study. All pretreatment verification plans were generated using the Eclipse treatment planning system (TPS). Dose distributions obtained from electronic portal imaging device (EPID), ArcCHECKTM, and two-dimensional (2D)/three-dimensional (3D) PerFRACTIONTM were then compared with the dose distribution calculated from the Eclipse TPS. In addition, the correlation between the plan complexity (the modulation complexity score and the leaf travel modulation complexity score) and the gamma passing rates (GPRs) of each quality assurance (QA) system was evaluated by calculating Spearman's rank correlation coefficient (rs) with the corresponding p-values. The gamma passing rates of 46 patients analyzed with the 2D/3D PerFRACTIONTM using the 2%/2 mm and 3%/3 mm criteria showed almost similar trends to those analyzed with the Portal dose imaging prediction (PDIP) and ArcCHECKTM except for those analyzed with ArcCHECKTM using the 2%/2 mm criterion. Most of weak or moderate correlations between GPRs and plan complexity were observed for all QA systems. The trend of mean rs between GPRs using PDIP and 2D/3D PerFRACTIONTM for both criteria and plan complexity indices as in the GPRs analysis was significantly similar for brain, prostate, and lung cases with lower complexity compared to H&N case. Furthermore, the trend of mean rs for 2D/3D PerFRACTIONTM for H&N case with high complexity was similar to that of ArcCHECKTM and slightly lower correlation was observed than that of PDIP. This work showed that the performance of 2D/3D PerFRACTIONTM for pretreatment patient-specific QA was almost comparable to that of PDIP, although there was small difference from ArcCHECKTM for some cases. Thus, we found that the PerFRACTIONTM is a suitable QA system for pretreatment patient-specific QA in a variety of treatment sites.

Development of TDR-based Water Leak Detection Sensor for Seawater Pipeline of Ship (시간영역반사계를 이용한 해수배관시스템의 누수 탐지용 센서 개발 연구)

  • Hwang, Hyun-Kyu;Shin, Dong-Ho;Kim, Heon-Hui;Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1044-1053
    • /
    • 2022
  • Time domain reflectometry (TDR) is a diagnostic technique to evaluate the physical integrity of cable and finds application in leak detection and localization of piping system. In this study, a cable-shaped leak detection sensor was proposed using the TDR technique for monitoring leakage detection of ship's engine room seawater piping system. The cable sensor was developed using a twisted pair arrangement and wound by an absorbent material. The availability and performance of the sensor for leak detection and localization were evaluated on a lab-scale pipeline set up. The developed sensor was installed onto the pipes and flanges of the lab-scale set up and various TDR waveforms were acquired and analyzed according to the dif erent variables including the number of twists and sheath thickness. The result indicated that the twisted cable sensor was able to produce clear and smooth signal as compared to the TDR sensor with a parallel arrangement. The optimal number of twist was determined to be above 10 per the unit length. The optimal diameter of sheath thickness that results in the desired sensitivity was determined to be ranging from 80% up to 120% of the diameter of the conductor. The linear regression analysis for estimation of leak localization was carried out to estimate the location of the leakage, and the result was a determination coefficient of 0.9998, indicating a positive relationship with the actual leakage point. The proposed TDR based leak detection method appears to be an effective method for monitoring leakage of ship's seawater piping system.

Design and Performance Evaluation of Two-Layered Microwave Absorbers(Dielectric/Magnetic) for Wide Oblique Incidence Angles Used for ITS (ITS용 2층형 전파 흡수체(유전체/자성체) 설계 및 경사 입사 흡수 특성 해석)

  • Kim, Jae-Woong;Kim, Sung-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1217-1223
    • /
    • 2007
  • Advanced microwave absorbers for wide oblique incidence angles are required in many applications including wireless communication or vehicle identification in ITS(Intelligent Transport System) where 5.8 GHz DSRC(Dedicated Short Range Communication) system is applied. In this study, two-layered microwave absorber(with a laminate structure of dielectric/magnetic composites) has been designed for the achievement of low reflection coefficient over wide incidence angles at 5.8 GHz. Iron flake particles are used as the filler in the absorbing layer, and the magnetic composite sheet exhibits high magnetic loss due to ferromagnetic resonance in gigahertz frequencies. The surface layer of low dielectric constant containing small amount of carbon black is used as the impedance transformer. On the basis of transmission line theory, the reflection loss has been calculated for the two-layer structure with variation of incident angles for both TE(Transverse Electric) and TM(Transverse Magnetic) polarizations. At the optimum thickness of the composite layers, a low value of reflection loss(less than -10 dB) has been predicted for wide incidence angles up to $55^{\circ}$ which is in good agreement with the measured value determined by free-space measurement.

A Study on Estimating Route Travel Time Using Collected Data of Bus Information System (버스정보시스템(BIS) 수집자료를 이용한 경로통행시간 추정)

  • Lee, Young Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1115-1122
    • /
    • 2013
  • Recently the demands for traffic information tend to increase, and travel time might one of the most important traffic information. To effectively estimate exact travel time, highly reliable traffic data collection is required. BIS(Bus Information System) data would be useful for the estimation of the route travel time because BIS is collecting data for the bus travel time on the main road of the city on real-time basis. Traditionally use of BIS data has been limited to the realm of bus operating but it has not been used for a variety of traffic categories. Therefore, this study estimates a route travel time on road networks in urban areas on the basis of real-time data of BIS and then eventually constructs regression models. These models use an explanatory variable that corresponds to bus travel time excluding service time at the bus stop. The results show that the coefficient of determination for the constructed regression model is more than 0.950. As a result of T-test performance with assistance from collected data and estimated model values, it is likely that the model is statistically significant with a confidence level of 95%. It is generally found that the estimation for the exact travel time on real-time basis is plausible if the BIS data is used.