• 제목/요약/키워드: System Verilog and Verilog HDL

Search Result 143, Processing Time 0.043 seconds

ASIC Implementation of Synchronization Circuit with Lossless Data Compensation (무손실 데이터 보상을 갖는 동기회로의 ASIC 구현)

  • 최진호;강호용;전문석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.980-986
    • /
    • 2002
  • In the fast data communication system, synchronized by a clock source, the loss of data will often occur due to several reasons as a differential routing path between data and clock, a differential propagation delay of components or an unstable phase of clock and data by external noise. In this paper, we describe the ASIC implementation of the data compensation circuit which can detect the data loss from above problems and recovery to original data with stable synchronization. Especially it supports a strong stability and a good BER in the communication system for fast data transfer as optic area. This circuit is implemented by Verilog HDL and available to the digital ASIC implementations related to fast data transfer.

Implementation of a PRML Detection for Asymmetric High-density Optical Storage System (고밀도 비선형 광 저장장치를 위한 새로운 부분응답 최대유사도 신호 검출기 구현)

  • Lee, Kyu-Suk;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1052-1057
    • /
    • 2006
  • The implement the adaptive partial response maximum likelihood (PRML) detector with tilt analyzer for asymmetric high-density optical storage system. For the estimation of disc tilt, we exploit spc patterns in each data frame. Because of using the ROM table to renew the coefficients of equalizer and reference values of branches, the complexity of the hardware is reduced. The proposed PRML has been designed and verified by VerilogHDL and synthesized by the Synopsys Design Compiler with Hynix $0.35{\mu}m$ STD cell library. In the result, the total gate count is 35K, and the maximum operating frequency is 140MHz.

Design and Verification of the Motion Estimation and Compensation Unit Using Full Search Algorithm (전역탐색 알고리즘을 이용한 움직임 추정 보상부 설계 및 검증)

  • Jin Goon-Seon;Kang Jin-Ah;Lim Jae-Yoon
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.585-588
    • /
    • 2004
  • This paper describes design and verification of the motion estimation and compensation unit using full search algorithm. Video processor is the key device of video communication systems. Motion estimation is the key module of video processor. The technologies of motion estimation and compensation unit are the core technologies for wireless video telecommunications system, portable multimedia systems. In this design, Verilog simulator and logic synthesis tools are used for hardware design and verification. In this paper, motion estimation and compensation unit are designed using FPGA, coded in Verilog HDL, and simulated and verified using Xilinx FPGA.

  • PDF

A Hardware Implementation of Ultra-Lightweight Block Cipher PRESENT-80/128 (초경량 블록암호 PRESENT-80/128의 하드웨어 구현)

  • Cho, Wook-Lae;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.430-432
    • /
    • 2015
  • This paper describes a hardware implementation of ultra-lightweight block cipher algorithm PRESENT-80/128 that supports for two master key lengths of 80-bit and 128-bit. The PRESENT algorithm that is based on SPN (substitution and permutation network) consists of 31 round transformations. A round processing block of 64-bit data-path is used to process 31 rounds iteratively, and circuits for encryption and decryption are designed to share hardware resources. The PRESENT-80/128 crypto-processor designed in Verilog-HDL was verified using Virtex5 XC5VSX-95T FPGA and test system. The estimated throughput is about 550 Mbps with 275 MHz clock frequency.

  • PDF

Low-area Pipeline FFT Structure in OFDM System Using Common Sub-expression Sharing and CORDIC (Common sub-expression sharing과 CORDIC을 이용한 OFDM 시스템의 저면적 파이프라인 FFT 구조)

  • Choi, Dong-Kyu;Jang, Young-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.157-164
    • /
    • 2009
  • An efficient pipeline MDC Radix-4 FFT structure is proposed in this paper. Every stages in pipeline FFT structure consists of delay' commutator and butterfly. Proposed butterflies in front and rear stages utilize CORDIC and Common Sub-expression Sharing(CSS) techniques, respectively. It is shown that proposed butterfly structure can reduce the number of adders through sharing common patterns of CSD type coefficients. The Verilog-HDL modeling and Synopsys logic synthesis results that the proposed structure show 48.2% cell area reduction in the complex multiplication part and 22.1% cell area reduction in overall 256-point FFT structure comparison with those of the conventional structures. Consequently, the proposed FFT structure can be efficiently used in various OFDM systems.

Design of a Low Memory Bandwidth Inter Predictor Using Implicit Weighted Prediction Technique (묵시적 가중 예측기법을 이용한 저 메모리 대역폭 인터 예측기 설계)

  • Kim, Jinyoung;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2725-2730
    • /
    • 2012
  • In this paper, for improving the H.264/AVC hardware performance, we propose an inter predictor hardware design using a multi reference frame selector and an implicit weighted predictor. previous reference frame are reused for Low Memory Bandwidth. The size of the reference memory in the predictor was reduced by about 46% and the external memory access rate was reduced by about 24% compared with the one in the reference software JM16.0. We designed the proposed system with Verilog-HDL and synthesized inter predictor circuit using the Magnachip 0.18um CMOS standard cell library. The synthesis result shows that the gate count is about 2,061k and the design can run at 91MHz.

Implementation of Segment_LCD display based on SoC design

  • Ling, Ma;Kim, Kab-Il;Son, Young-I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.59-62
    • /
    • 2003
  • The purpose of this paper is to present how to implement Segment_LCD display using SoC design. The SoC design is achieved by using an ARM_based Excalibur device. The Excalibur device offers an outstanding embedded development platform with ARM922T and FPA. The design in the Excailbur device uses the embedded AR띤 Processor core and the AMBA high-performance bus (AHH) to write to a memory-mapped slave peripheral in the FPGA portion of the device. Here, Segment_LCD is one kind of memory-mapped slave peripherals. In order to Implement the Segment_LCD display based on SoC design, four steps are fellowed. At first, IP modules are made by using Verilog HDL. Secondly, the ARM processor of the Excalibur is programmed using C in ADS (ARM Developer Suite). And in the third step, the whole system is simulated and verified. At last, modules are downloaded to SoCMaster kit. Both Quartus II software and ModelSim5.5e software are the key software tools during the design.

  • PDF

Pipeline Structured-Degree Computationless Modified Euclidean Algorithm for RS(23,17) Decoder (RS(23,17) 복호기를 위한 PS-DCME 알고리즘)

  • Kang, Sung-Jin;Hong, Dae-Ki
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, A pipeline structured-degree computationless modified Euclidean (PS-DCME) algorithm is proposed, which can be used for a RS(23,17) decoder for MB-OFDM system. PS-DCME algorithm requires a state machine instead of the degree computation and comparison circuits, so that the hardware complexity of the decoder can be reduced and high-speed decoder can be implemented. We have implemented a RS(23,17) decoder with PS-DCME using Verilog HDL and synthesized with Samsung 65nm library. From synthesis results, it can operate at clock frequency of 250MHz, and gate count is 19,827.

  • PDF

Design of a High Performance Two-Step SOVA Decoder (고성능 Two-Step SOVA 복호기 설계)

  • 전덕수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.384-389
    • /
    • 2003
  • A new two-step soft-output Viterbi algorithm (SOVA) decoder architecture is presented. A significant reduction in the decoding latency can be achieved through the use of the dual-port RAM in the survivor memory structure of the trace-back unit. The system complexity can be lowered due to the determination of the absolute value of the path metric differences inside the add-compare-select (ACS) unit. The proposed SOVA architecture was verified successfully by the functional simulation of Verilog HDL modeling and the FPGA prototyping. The SOVA decoder achieves a data rate very close to that of the conventional Viterbi Algorithm (VA) decoder and the resource consumption of the realized SOVA decoder is only one and a half times larger than that of the conventional VA decoder.

Design of Efficient Trapezoidal Filter and Peak Value Detection Circuit for XRF Systems (XRF시스템용 효율적인 Trapezoidal 필터 및 최대값 검출 회로 설계)

  • Piao, Zheyan;Chung, Jin-Gyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.138-144
    • /
    • 2013
  • In XRF systems, various techniques have been developed for the synthesis of pulse shapes using digital methods instead of traditional analog methods. Trapezoidal pulse shaping algorithms can be used for digital multi-channel pulse height analysis in X-ray spectrometer systems. In this paper, an efficient trapezoidal filter architecture is presented. In addition, we present a hardware-efficient peak value detection algorithm. By the proposed algorithm, peak value detection error is decreased by half compared with the conventional algorithm. The proposed Digital Pulse Processing(DPP) algorithm is designed using Verilog HDL and implemented using an FPGA on a test board. It is demonstrated that the implemented DPP board works successfully in practical XRF systems.