• Title/Summary/Keyword: System Safety Assessment

Search Result 1,772, Processing Time 0.026 seconds

A Study of Safety Acquirement for an Assessment of Ultra High Pressure System (초고압 시스템의 안전성 확보에 대한 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Kim, Jae-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.7-14
    • /
    • 2010
  • Ultra high pressure system, which can be generally increased over 1,000bar, needs to have sealing mechanism to protect leakage and selection of the materials used in the intensifier. Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions. Components need to be tested under 1.5 to 3 times of rated pressure to check the tolerance even though rated pressure range of these components are not ultra high pressure. So, the ultra high pressure system needs to be equiped to test components. In this study, safety assessments of ultra high pressure system which are using failure analysis of components, changing the types of the control system, and finite element analysis with static condition, are investigated.

Safety Assessment for PCS of Photovoltaic and Energy Storage System Applying FTA (FTA를 적용한 태양광 발전 및 ESS 연계형 PCS의 안전성 평가)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Kim, Eui-Sik;Nam, Ki-Gong;Jeong, Cheon-Kee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.14-20
    • /
    • 2019
  • This paper presents a safety assessment based approach for the safe operation for PCS(Power Conditioning System) of photovoltaic and energy storage systems, applying FTA. The approach established top events as power outage and a failure likely to cause the largest damage among the potential risks of PCS. Then the Minimal Cut Set (MCS) and the importance of basic events were analyzed for implementing risk assessment. To cope with the objects, the components and their functions of PCS were categorized. To calculate the MCS frequency based on IEEE J Photovolt 2013, IEEE Std. 493-2007 and RAC (EPRD, NPRD), the failure rate and failure mode were produced regarding the basic events. In order to analyze the top event of failure and power outage, it was assumed that failures occurred in DC breaker, AC breaker, SMPS, DC filter, Inverter, CT, PT, DSP board, HMI, AC reactor, MC and EMI filter and Fault Tree was drawn. It is expected that the MCS and the importance of basic event resulting from this study will help find and remove the causes of failure and power outage in PCS for efficient safety management.

The study on improving the regulation for industrial accident rate level assessment of construction companies (건설업 산업재해발생률 산정·평가기준 개선방안 연구)

  • Park, Yong-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.17-24
    • /
    • 2016
  • The regulation for industrial accident rate level assessment of construction companies was introduced to the construction industry in the Republic of Korea since 1993 and has brought positive outcome on industrial accidents reduction at construction work sites. There were considerable decrease of industrial accident ratio and enforcing of contrators' safety organizations from the beginning of the regulation for industrial accident rate level assessment. In spite of these positive outcomes, there were some negative effects such as contractors' shrinking accident reports to keep good accident ratios since these figures had a great impact on pre-qualification stage of bidding when general contractors were competing for new construction projects. In addition, Comprehensive evaluation bid system, which replaces the lowest price bid system is applied to government-ordered construction projects since 2016. Comprehensive evaluation bid system includes construction company's accident rate as one of the evaluation items and carries out with the industrial accident rate level assessment of construction companies at the same time. The regulations of two systems have been called for improvement to unify these different procedures and standards which have led business stakeholders to confusion for several years. This study aims to devote on lessening shrinking accident reports and to reduce the waste of business stakeholders through changing the regulation for industrial accident rate level assessment.

Effect of Proof Test of Protective System on Securing Safety of Off-site Risk Assessment (보호시스템 보증시험 적용이 장외영향평가 안전성 확보에 미치는 영향)

  • Kim, Min-Su;Kim, Jae-Young;Lee, Eun-Byeol;Yoon, Junheon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.46-53
    • /
    • 2017
  • The risk is expressed as consequence of damage multiplied by likelihood of failure. The installation of a protective system reduces the risk by reducing the likelihood of failure at the facility. Also, the protective system has different effects on the likelihood of failure according to the proof test cycle. However, when assessing risks in the Off-site Risk Assessment (ORA) system, the variation in risk was not reflected according to the proof test cycle of protective system. This study was conducted to examine the need for proof test and the importance of cycle setting by applying periodic proof test of the protective system to ORA. The results showed that the likelihood of failure and the risk increased with longer proof test cycle. The risk of a two-yearly proof test was eight times greater than that of a three-month cycle. From the results, the protective system needs periodic proof test. Untested protective system for a long term cannot be reliable because it is more likely to be failed state when it is called upon to operate. In order to reduce the risk to an acceptable level, it is effective to differently set the proof test cycle according to the priority. This study suggested a more systematic and accurate risk analysis standard than ORA. This standard is expected to enable an acceptable level of risk management by systematically setting the priority and proof test cycle of the protective system. It is also expected to contribute to securing the safety of chemical facilities and at the same time, will lead to the development of the ORA system.

Safety Management Information System in Plants Construction Work (플랜트 건설공사의 안전관리 정보시스템 개발)

  • Park, Jong-Keun
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.4
    • /
    • pp.23-29
    • /
    • 2012
  • There are insufficient models that find problems and solutions for accident prevention through risk assessment and suggest safe work process and work instruction from foundation works to finish work for accident decrease. This paper presents a quantitative risk assessment model by analysis of risk factors in each process such as appurtenant works, temporary works, structural works, equipment work, finishing work and etc based on accident examples and investigation on actual condition in plants construction work. In addition, the safety management system was developed to perform risk assessment of plants construction and use it for effective safety training for labor.

Concept Design of Fire Safety Module for SV20 Service in the Korean e-Navigation System

  • Kim, Byeol;Moon, Serng-Bae;Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.42 no.5
    • /
    • pp.323-330
    • /
    • 2018
  • The Korean e-Navigation system is a Korean approach to correspond with implementation of IMO e-Navigation. It provides five services, among them SV20 service, a ship remote monitoring system that collects and processes sensor information related to fire, navigation, and seakeeping performance safety. The system also detects abnormal conditions such as fires, capsizing, sinking, navigation equipment failure during navigation, and calculates the safety index and determines the emergency level. According to emergency level, it provides appropriate emergency response guidance for the onboard operator. The fire safety module is composed of three sub-modules; each module is the safety index sub-module, the emergency level determination sub-module and emergency response guidance sub-module. In this study, operational concept of the fire safety module in SV20 service is explained, and fire safety assessment factors are estimated, to calculate the fire safety index. Fire assessment factors included 'Fire detector position factor,' 'Smoke diffusion rate factor,' and 'Fire-fighting facilities factor.'

SAFETY ASSESSMENT OF KOREAN NUCLEAR FACILITIES: CURRENT STATUS AND FUTURE

  • Baek, Won-Pil;Yang, Joon-Eon;Ha, Jae-Joo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.391-402
    • /
    • 2009
  • This paper introduces the development of safety assessment technology in Korea, focusing on the activities of the Korea Atomic Energy Research Institute in the areas of system thermal hydraulics, severe accidents and probabilistic safety assessment. In the 1970s and 1980s, safety analysis codes and methodologies were introduced from the United States, France, Canada and other developed countries along with technology related to the construction and operation of nuclear power plants. The main focus was on understanding and utilizing computer codes that were sourced from abroad up to the early 1990s, when efforts to develop domestic safety analysis codes and methodologies became active. Remarkable achievements have been made over the last 15 years in the development and application of safety analysis technologies. In addition, significant experimental work has been performed to verify the safety characteristics of reactors and fuels as well as to support the development and validation of analysis methods.

An Study on the Improving Law System For Laboratorial Safety (연구실 안전성 확보를 위한 법령 제도의 개선방안)

  • Gal, Won-Mo;Sung, Ho-Gyeong;Han, Ou-Sup
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.63-70
    • /
    • 2007
  • There are something unreasonable, unsatisfactory on the law system for laboratorial safety enforced by the government from April 2006. Therefore, the system should be reviewed and revised to be satisfactory for current research condition. This study is to analyze research areas for improving laboratorial safety and to show safer ideas. With more detail, more practically improving ideas have been shown for systemizing safety assessment in advance, effective organization of laboratory, safety committee and their regulation. It is expected that better safety level all the concerned engagement, reasonable revision of safety regulation of laboratory, can be made by this research result.

A Study on the Safety Plan for a Train Control System (열차제어시스템의 안전계획 수립에 관한 연구)

  • Kim Jong-Ki;Shin Duc-Ko;Lee Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.264-270
    • /
    • 2006
  • In this paper we present a safety plan to be applied to the development of the TCS(Train Control System). The safety plan that can be applied to the life cycle of a system, from the conceptual design to the dismantlement, shows the whole process of the paper work in detail through the establishment of a goal, analysis and assessment, the verification. In this paper we study about the making a plan, the preliminary hazard analysis, the hazard identification and analysis to guarantee the safety of the TCS. The process far the verification of the system safety is divided into several steps based on the target system and the approaching method. The guarantee of the system safety and the improvement of the system reliability is fellowed by the recommendation of the international standards.

Development of the ISEP Based on Systems Engineering (시스템엔지니어링을 적용한 ISEP 개발에 관한 연구)

  • Byun, BoSuk;Choi, YoChul;Park, Young T.
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.725-735
    • /
    • 2013
  • Purpose: The purpose of this study is to propose an Integrated Safety Evaluation Process (ISEP) that can enhances the safety aspect of the safety-critical system. This process utilizes the advantages of the iterative Systems Engineering process combined with the safety assessment process that is commonly and well defined in many standards and/or guidelines for railway, aerospace, and other safety-critical systems. Methods: The proposed process model is based on the predefined system lifecycle, in each phase of which the appropriate safety assessment activities and the safety data are identified. The interfaces between Systems Engineering process and the safety assessment process are identified before the two processes are integrated. For the integration, the elements at lower level of Systems Engineering process are combined with the relevant elements of safety assessment process. This combined process model is represented as Enhanced Functional Flow Block Diagram (EFFBD) by using CORE(R) that is commercial modelling tool. Results: The proposed model is applied to the lifecycle and management process of the United States aircraft system. The US aircraft systems engineering process are composed of twelve key elements, among which the requirements management, functional analysis, and Synthesis processes are considered for examplenary application of the proposed process. To synchronize the Systems Engineering process and the safety assessment process, the Systems Engineering milestones are utilized, where the US aircraft system has thirteen milestones. Taking into account of the nine steps in the maturity level, the integrated process models are proposed in some phases of lifecycle. The flows of processes are simulated using CORE(R), confirming the flows are timelined without any conflict between the Systems Engineering process and the safety assessment process. Conclusion: ISEP allows the timeline analysis for identifying activity and data flows. Also, the use of CORE(R) is shown to be effective in the management and change of process data, which helps for the ISEP to apply for the development of safety critical system. In this study, only the first few phases of lifecyle are considered, however, the implementation through operation phases can be revised by combining the elements of safety activities regarding those phases.