• Title/Summary/Keyword: System Optimization

Search Result 6,553, Processing Time 0.04 seconds

A Joint Resource Allocation Scheme for Relay Enhanced Multi-cell Orthogonal Frequency Division Multiple Networks

  • Fu, Yaru;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.288-307
    • /
    • 2013
  • This paper formulates resource allocation for decode-and-forward (DF) relay assisted multi-cell orthogonal frequency division multiple (OFDM) networks as an optimization problem taking into account of inter-cell interference and users fairness. To maximize the transmit rate of system we propose a joint interference coordination, subcarrier and power allocation algorithm. To reduce the complexity, this semi-distributed algorithm divides the primal optimization into three sub-optimization problems, which transforms the mixed binary nonlinear programming problem (BNLP) into standard convex optimization problems. The first layer optimization problem is used to get the optimal subcarrier distribution index. The second is to solve the problem that how to allocate power optimally in a certain subcarrier distribution order. Based on the concept of equivalent channel gain (ECG) we transform the max-min function into standard closed expression. Subsequently, with the aid of dual decomposition, water-filling theorem and iterative power allocation algorithm the optimal solution of the original problem can be got with acceptable complexity. The third sub-problem considers dynamic co-channel interference caused by adjacent cells and redistributes resources to achieve the goal of maximizing system throughput. Finally, simulation results are provided to corroborate the proposed algorithm.

A Study on the Optimization Design of Check Valve for Marine Use (선박용 체크밸브의 최적설계에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.56-61
    • /
    • 2017
  • The check valves are mechanical valves that permit fluids to flow in only one direction, preventing flow from reversing. It is classified as one way directional valves. There are various types of check valves that used in a marine application. A lift type check valve uses the disc to open and close the passage of fluid. The disc lift up from seat as pressure below the disc increases, while drop in pressure on the inlet side or a build up of pressure on the outlet side causes the valve to close. An important concept in check valves is the cracking pressure which is the minimum upstream pressure at which the valve will operate. On the other hand, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL(Nonlinear Programming by Quadratic Lagrangian) and genetic algorithm(GA) for optimization. NLPQL is the implementation of a SQP(sequential quadratic programming) algorithm. SQP is a standard method, based on the use of a gradient of objective functions and constraints to solve a non-linear optimization problem. A characteristic of the NLPQL is that it stops as soon as it finds a local minimum. Thus, the simulation results may be highly dependent on the starting point which user give to the algorithm. In this paper, we carried out optimization design of the check valve with NLPQL algorithm.

Optimization of 3G Mobile Network Design Using a Hybrid Search Strategy

  • Wu Yufei;Pierre Samuel
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.471-477
    • /
    • 2005
  • This paper proposes an efficient constraint-based optimization model for the design of 3G mobile networks, such as universal mobile telecommunications system (UMTS). The model concerns about finding a set of sites for locating radio network controllers (RNCs) from a set of pre-defined candidate sites, and at the same time optimally assigning node Bs to the selected RNCs. All these choices must satisfy a set of constraints and optimize an objective function. This problem is NP-hard and consequently cannot be practically solved by exact methods for real size networks. Thus, this paper proposes a hybrid search strategy for tackling this complex and combinatorial optimization problem. The proposed hybrid search strategy is composed of three phases: A constraint satisfaction method with an embedded problem-specific goal which guides the search for a good initial solution, an optimization phase using local search algorithms, such as tabu algorithm, and a post­optimization phase to improve solutions from the second phase by using a constraint optimization procedure. Computational results show that the proposed search strategy and the model are highly efficient. Optimal solutions are always obtained for small or medium sized problems. For large sized problems, the final results are on average within $5.77\%$ to $7.48\%$ of the lower bounds.

Multi-type, multi-sensor placement optimization for structural health monitoring of long span bridges

  • Soman, Rohan N.;Onoufrioua, Toula;Kyriakidesb, Marios A.;Votsisc, Renos A.;Chrysostomou, Christis Z.
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2014
  • The paper presents a multi-objective optimization strategy for a multi-type sensor placement for Structural Health Monitoring (SHM) of long span bridges. The problem is formulated for simultaneous placement of strain sensors and accelerometers (heterogeneous network) based on application demands for SHM system. Modal Identification (MI) and Accurate Mode Shape Expansion (AMSE) were chosen as the application demands for SHM. The optimization problem is solved through the use of integer Genetic Algorithm (GA) to maximize a common metric to ensure adequate MI and AMSE. The performance of the joint optimization problem solved by GA is compared with other established methods for homogenous sensor placement. The results indicate that the use of a multi-type sensor system can improve the quality of SHM. It has also been demonstrated that use of GA improves the overall quality of the sensor placement compared to other methods for optimization of sensor placement.

Comparison of Three Optimization Methods Using Korean Population Data

  • Oh, Deok-Kyo
    • Korean System Dynamics Review
    • /
    • v.13 no.2
    • /
    • pp.47-71
    • /
    • 2012
  • The purpose of this research is the examination of validity of data as well as simulation model, i.e. to simulate the real data in the SD model with the least error using the adjustments for the faithful reflection of real data to the simulation. In general, SD programs (e.g. VENSIM) utilize the Euler or Runge-Kutta method as an algorithm. It is possible to reflect the trend of real data via these two estimation methods however can cause the validity problem in case of the simulation requiring the accuracy as they have endogenous errors. In this article, the future population estimated by the Korea National Statistical Office (KNSO) to 2050 is simulated by the aging chain model, dividing the population into three cohorts, 0-14, 15-64, 65 and over cohorts by age and offering the adjustments to them. Adjustments are calculated by optimization with three different methods, optimization in EXCEL, manual optimization with iterative calculation, and optimization in VENSIM DSS, the results are compared, and at last the optimal adjustment set with the least error are found among them. The simulation results with the pre-determined optimal adjustment set are validated by methods proposed by Barlas (1996) and other alternative methods. It is concluded that the result of simulation model in this research has no significant difference from the real data and reflects the real trend faithfully.

  • PDF

Optimization of Triple Response Systems by Using the Dual Response Approach and the Hooke-Jeeves Search Method

  • Fan, Shu-Kai S.;Huang, Chia-Fen;Chang, Ko-Wei;Chuang, Yu-Chiang
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.1
    • /
    • pp.10-19
    • /
    • 2010
  • This paper presents an extended computing procedure for the global optimization of the triple response system (TRS) where the response functions are nonconvex (nonconcave) quadratics and the input factors satisfy a radial region of interest. The TRS arising from response surface modeling can be approximated using a nonlinear mathematical program involving one primary (objective) function and two secondary (constraints) functions. An optimization algorithm named triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the nondegenerate TRS. In TRSALG, the Lagrange multipliers of target (secondary) functions are computed by using the Hooke-Jeeves search method, and the Lagrange multiplier of the radial constraint is located by using the trust region (TR) method at the same time. To ensure global optimality that can be attained by TRSALG, included is the means for detecting the degenerate case. In the field of numerical optimization, as the family of TR approach always exhibits excellent mathematical properties during optimization steps, thus the proposed algorithm can guarantee the global optimal solution where the optimality conditions are satisfied for the nondegenerate TRS. The computing procedure is illustrated in terms of examples found in the quality literature where the comparison results with a gradient-based method are used to calibrate TRSALG.

Design of Two-group Zoom Lens System with Wide Angle of View Using Global Structure Function (전역구조함수를 사용한 광각 2군 줌 렌즈의 설계)

  • Kwon, Hyuk-Joon;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.319-327
    • /
    • 2009
  • We introduce a new design technique by treating a two-group zoom lens system with a wide angle of view. First, the concept of the global optimization is introduced in the initial design stage, and from this, the global design technique is completed by analyzing and summarizing large quantities of modern design data. That is, we define the global structure function to achieve a new conceptual design technique for global optimization. And the function is put in a simple form by referring lots of patent data, manipulated with other algebraic equations, and solved finally such that we obtain the global solution region. The global solution region corresponds to the global optimization and suggests insightful systematized directions for the design of two-group zoom lens systems. These directions are attractive compared to global optimization.