• Title/Summary/Keyword: System Life Cycle Model

Search Result 439, Processing Time 0.037 seconds

Process Model for Construction Project Life-cycle Management System (CPLM 구축을 위한 프로세스 모델 구축)

  • Song, Jae-Hong;Yoon, Su-Won;Shin, Tae-Hong;Chin, Sang-Yoon;Choi, Cheol-Ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.277-282
    • /
    • 2007
  • Construction process works in sequence order and there are many different software for managing project and activity. So, there are many limitations such as in the stage of activity data loss can occur, in each stage concurrent cannot operate in construction industry. In order to solve these problem, agents have to cooperate each other and they need to share of data. Therefore, the purpose of this paper is to develop a process model and the process model will be use in the future to make Construction Project Life-Cycle Management based on concept of PLM(Product Life cycle Management) in the manufacturing industry, CE(Concurrent Engineering) and BlM(Building Information Modeling)

  • PDF

A Study of LCCA and LCA to Evaluate Feasibility for Introducing Smart Quiescent Power Control System into Office Building (LCCA 및 LCA 분석을 이용한 오피스 빌딩에 지능형 대기전력 제어시스템 도입의 타당성 분석에 관한 연구)

  • Quan, Junlong;Lee, Seok-Jung;Choi, Hye-Mi;Kim, Kyung-Hwan;Kim, Ju-Hyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.141-149
    • /
    • 2016
  • Recently, in an attempt to overcome the defects of quiescent power shutdown system, smart quiescent power control system has been developed. However, due to its higher investment costs, feasibility evaluation must be conducted. While LCCA (Life Cycle Cost Analysis) model is useful to estimate net savings of alternatives that differ with respect to initial costs and operating costs, the environmental burdens are not considered. On the contrary, LCA (Life Cycle Assessment) model is suitable to assess environmental impacts associated with the stages of a product's life but it does not consider costs. In this study, a comprehensive analysis on the economic and environmental impacts of smart quiescent power control system is conducted by using LCCA and LCA model. In addition, sensitivity analysis is carried out to quantify accuracy of estimates.

A Study of Appraisal in Record Continuum Theory: Derivation of Key Elements through the Comparison with Appraisal in Life Cycle Model (레코드 컨티뉴엄의 기록 평가 논리 분석 - 라이프사이클과의 비교를 통한 핵심 요소 도출 -)

  • Kim, Myoung-hun
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.3
    • /
    • pp.25-46
    • /
    • 2022
  • In this study, the appraisal in record continuum theory is analyzed in conjunction with the appraisal in life cycle model. In order to understand the more fundamental implications of appraisal in electronic record environment, it is essential to analyze the appraisal inherent in record continuum theory. Record continuum theory can provide a theoretical basis for appraisal in electronic record environment in that it is a theoretical system in opposition of the appraisal based on life cycle model and dualistic records management system resulting from it. In particular, considering that the appraisal is a purposive act of seeking the meaning of records, the reinterpretation of the concept and meaning of records intended in record continuum theory enables us to derive the different appraisal logics than before. Therefore In this study, based on comparison with the appraisal based on life cycle model and the new record concept presented in record continuum, the appraisal in record continuum theory is analyzed focusing on three aspects.

A Study on Advanced Frame of Core-Banking Model (코어뱅킹 모델의 발전모형 연구)

  • Weon, Dal-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3194-3200
    • /
    • 2012
  • The aim of the paper is systematically to organize the historical facts of financial IT development process through various tracking and proved knowledge, it is to propose the direction and the advanced frame of core-banking model in next generation for the year 2020s. To achieve it, this study variously analyzed the meaningful pattern of development process of financial IT by backtracking life-cycle of Core-Banking model and it presented new model of Core-Banking for the past 40 years. In research findings, the life cycle of financial IT system and core-banking model have been analyzed about 10 years and the longest model of life cycle is about 33 years. As a result, It proved to be desirable that the advanced frame of the Core-Banking model adds the functions of business hub and product life cycle management to basic frame of its existing model in the future. In addition, big bang development method of new next generation system must be sublated. Also, They need to be initiated more business-oriented than IT-oriented. Along with this, the financial IT should be developed into the convergence industry, and it needs to extend the systematization of Core-Banking model studies and more professionals. Finally, this study has arranged the financial IT development process in domestic and presents new frame through analyzing intensively the Core-Banking model for the first time Therefore, it can be contributed to serve the guideline regarding the direction in new next generation system.

Design Value Analysis and LCC Analysis Model of Water Supply System Project (수도시설의 설계VA 및 LCC 분석모델)

  • Lim Jong-Kwon;Jung Pyung-Ki;Seo Jong-Won;Lee Jae-Sun;Cho Kook-Rae
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.469-472
    • /
    • 2003
  • A life cycle cost analysis model for public water supply systems should be different from the ones for other civil and architectural facilities as the operation and the maintenance cost of the water supply systems mainly come from the various mechanical systems and the pipeline systems of the collecting/treating/distributing facilities. This paper presents a cost classification scheme and a life cycle cost analysis model for public water supply systems. A value analysis (VA) procedure that is well suited for practical purposes is also presented. The presented life cycle model and the value analysis procedure were applied to a real world project, and this case study is discussed in the paper. The model and the procedure presented in this study can greatly contribute to the value-oriented design alternative selection, the estimation of the maintenance cost, and the allocation of budget for water supply system construction projects.

  • PDF

A Study on the Design Value Analysis Model Using Probabilistic LCC Analysis of Water Supply System Project (확률적 LCC분석기법을 활용한 수도시설물의 설계VA모델에 관한 연구)

  • Jung Pyung-Ki;Seo Jong-Won;Lim Jong-Kwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.181-193
    • /
    • 2004
  • A life cycle cost analysis model for public water supply systems should be different from the ones for other civil and architectural facilities as the operation and the maintenance cost of the water supply systems mainly come from the various mechanical systems and the pipeline systems of the collecting/treating/distributing facilities. This paper presents a cost classification scheme and a probabilistic life cycle cost analysis (PLCCA) model for public water supply systems. A value analysis (VA) procedure that is well suited for practical purposes is also presented. The presented probabilistic life cycle model and the value analysis procedure were applied to a real world project, and this case study is discussed in the paper. The model and the procedure presented in this study can greatly contribute to the value-oriented design alternative selection, the estimation of the maintenance cost, and the allocation of budget for water supply system construction projects.

Optimal Life Cycle design of Water Pipe System using Genetic Algorithm (상수관망 최적 생애주기 설계를 위한 유전알고리즘의 적용)

  • Lee, Seungyub;Yoo, Do Guen;Jung, Donghwi;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4216-4227
    • /
    • 2015
  • In this study, a model is developed based on Life Cycle Energy Analysis (LCEA) method with Genetic Algorithm (GA) to determine optimal diameter of Water Distribution System (WDS). For hydraulic analysis the EPANET2.0 program is linked with developed model, pipe-aging equation and pipe-breakage equation are built in to developed model to simulate pipe change through life cycle. The model is then applied to two sample WDSs for optimal energy design. After determining optimal diameter for each WDS, the total cost is calculated based on determined diameter and compared with well-known optimal diameter set of each WDS. Results show that optimal energy design of WDSs through the developed model can be an alternative option for optimal design of WDSs for reducing energy with lower in cost.

Practical Application of Life-Cycle Cost Effective Design and Rehabilitation of Bridges

  • Cho, HyoNam;Park, KyungHoon;Hwang, YoonGoog;Lee, KwangMin
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.72-80
    • /
    • 2004
  • Recently, the demand on the practical application of life-cycle cost effective design and rehabilitation of bridges is rapidly growing in civil engineering practice. However, in spite of impressive progress in the researches on the Life-Cycle Cost (LCC), the most researches have only focused on the theoretical point but did not fully incorporate the critical issues for the practical implementation. Thus, this paper is intended to suggest a systemic integrated approach to the practical application of various LCC methodologies for the design and rehabilitation of bridges, For that purpose, hierarchical definitions of LCC models are presented to categorize the approach of LCC assessment applicable for the practical implementation. And then, an integrated LCC system model is introduced with an emphasis on data uncertainty assessment and user-friendly knowledge-based database for its successful implementation. Finally, in order to demonstrate the LCC effectiveness for design and rehabilitation of real bridge structures, illustrative examples are discussed.

A Study on the Developing of the Life Cycle Cost Analysis System for Buildings (건축물의 Life Cycle Cost 분석 시스템 개발에 관한 연구)

  • Ji Sang-Jun;Park Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.450-453
    • /
    • 2001
  • Recently, the government recommend the use of LCC analysis at a feasibility phase by comprehensive countermeasures for efficient public construction projects and comprehensive countermeasures against preventing unconscientious construction. From the end of 1980's, studies of LCC is in progress actively However, it is difficult to put to practical use for lack of a process, a detailed guideline and existing data about LCC analysis. This study proposes a analysis methodology and a cost model can estimate life cycle cost for Buildings. Furthermore, it develops algorithms for computerizing which is able to estimate efficient LCC assessment.

  • PDF

A Conceptual Model Study For J.I.T(Just In Time) Construction Managemaent On High-rise Building-Concerned On Resource Life Cycle Of Concrete Construction- (고층건축공사 적시생산을 위한 관리모델 사례 -콘크리트 자재의 Life Cycle을 중심으로-)

  • Song Young-Suk;Lim Hyung-Chul;Choi Yun-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.4 s.8
    • /
    • pp.127-134
    • /
    • 2001
  • Effectiveness of Just in time managing system can be obtained by removing unexpected lead-time and maintaining consistency on the physical transportation of construction resource. Construction resource management is essential on checking on load data from production of shop to field, and it is based on building resource life cycle information. In this study, production, transportation, and assembly disciplines of concrete construction should real time communications exchanging information related to shop-field with each other, Establishing information support system is an important initial step for promoting active cooperations among these resource life cycle on data flow. To achieve this, on suitable using management point, we suggest a concrete construction control model.

  • PDF