• Title/Summary/Keyword: System Integration Test

Search Result 503, Processing Time 0.027 seconds

ECSS E70 Standard for developing common EGSE and MCS (전기지상지원장비 및 관제시스템 통합 개발을 위한 유럽 표준안 현황)

  • Huh, Yun-Goo;Choi, Jong-Yeoun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.56-64
    • /
    • 2008
  • Although the EGSE (Electrical Ground Support Equipment) and MCS (Mission Control System) have many similar or even identical functions, the EGSE used for assembly, integration and validation phase and the MCS for the mission operations phase are normally developed separately and used by different groups of engineers. However, the common ground system for EGSE and MCS has developed and many space missions such as PROBA (PRoject for On-Board Autonomy), ROSETTA, MARS EXPRESS, CRYOSAT (Cryosphere Satellite), GOCE (Gravity field and steady state Ocean Circulation Explorer), and GALILEO have used or will use it to minimize risk, reduce cost and improve overall product quality. It is based on ECSS (European Cooperation for Space Standards) E70 which is the international standard for ground systems and operations published by ECSS E70 Working Group. The ECSS E70 contains the basic rules, principles and requirements applied to the engineering of the ground systems and the execution of mission operations. This paper introduces standardization policy, organization and standard documentation in ECSS. The overview of ECSS E70 such as status, purpose and contents is also described in this paper.

  • PDF

GPS/INS Integration and Preliminary Test of GPS/MEMS IMU for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/MEMS IMU 센서 검증 및 GPS/INS 통합 알고리즘)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.225-234
    • /
    • 2009
  • Real-time Aerial Monitoring System (RAMS) is to perform the rapid mapping in an emergency situation so that the geoinformation such as orthophoto and/or Digital Elevation Model is constructed in near real time. In this system, the GPS/INS plays an very important role in providing the position as well as the attitude information. Therefore, in this study, the performance of an IMU sensor which is supposed to be installed on board the RAMS is evaluated. And the integration algorithm of GPS/INS are tested with simulated dataset to find out which is more appropriate in real time mapping. According to the static and kinematic results, the sensor shows the position error of 3$\sim$4m and 2$\sim$3m, respectively. Also, it was verified that the sensor performs better on the attitude when the magnetic field sensor are used in the Aerospace mode. In the comparison of EKF and UKF, the overall performances shows not much differences in straight as well as in curved trajectory. However, the calculation time in EKF was appeared about 25 times faster than that of UKF, thus EKF seems to be the better selection in RAMS.

Construction Monitoring for Steel Truss Bridge Widening Works (강 트러스교 확장공사시 시공중 계측)

  • Lee, Chang Soo;Jang, Jeong Hwan;Yi, Jang Seok;Kim, Nam Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2005
  • This study examines the stability of Sungsu bridge which was issued nine years ago because of its collapse accident and now is on the progress of extension work in each construction stage by construction monitoring system. From this study, the measured value in each construction stage of anchorage truss and suspended truss shows the agreement with the analytical values up to 60~110 percents, and the elements' stresses emanating from the pre-loading stage, are also similar to the analytical value. Regarding these results, it is expected that each member has enough stiffness and the construction condition is satisfactory. In addition, it is expected that the transverse members and sway bracing bolts integrate completely the existing truss and new attached truss as a one body from the result of the vibration test to find out the integration rates.

Analysis of Added Resistance using a Cartesian-Grid-based Computational Method (직교격자 기반 수치기법을 이용한 부가저항 해석)

  • Yang, Kyung-Kyu;Lee, Jae-Hoon;Nam, Bo-Woo;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.79-87
    • /
    • 2013
  • In this paper, an Euler equation solver based on a Cartesian-grid method and non-uniform staggered grid system is applied to predict the ship motion response and added resistance in waves. Water, air, and solid domains are identified by a volume-fraction function for each phase and in each cell. For capturing the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with a weighed line interface calculation (WLIC) method. The volume fraction of solid body embedded in a Cartesian-grid system is calculated by a level-set based algorithm, and the body boundary condition is imposed by volume weighted formula. Added resistance is calculated by direct pressure integration on the ship surface. Numerical simulations for a Wigley III hull and an S175 containership in regular waves have been carried out to validate the newly developed code, and the ship motion responses and added resistances are compared with experimental data. For S175 containership, grid convergence test has been conducted to investigate the sensitivity of grid spacing on the motion responses and added resistances.

Development of 100Nm-class Control Moment Gyroscopes for Industrial Applications (100Nm급 산업용 제어모멘트자이로 개발)

  • Lee, Seon-Ho;Kim, Dae-Kwan;Kim, Yong-Bok;Yong, Ki-Lyuk;Choi, Dong-Soo;Park, Do-Hwan;Kim, Il-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2015
  • The control moment gyroscope(CMG) which is well known as an effective high-torque-generating device is applicable to space vehicles, airplanes, ships, automobiles, robotics, etc. for attitude stabilization and maneuver. This paper deals with the overall details of 100Nm-class CMG development for various industrial applications, and provides the activities and results associated with the CMG system-level requirement analysis, the motor subsystem design/manufacturing/integration, the construction of ground support equipment, and the performance test and evaluation. The performance test reveals that the CMG generates the torque output more than 120Nm in as-designed operation of spin motor and gimbal motor.

Development of Clinical Performance Indicators for Establishing a Connecting System between Hospital Performance Management and Quality Improvement (의료기관의 성과관리와 질 향상 연계체계 구축을 위한 임상적 성과지표 개발)

  • Jang Keum Seong;Lee Sam Yong;Kim Yun Min;Hwang Sun Young;Kim Nam Young;Ryu Se Ang;Park Soon Joo;Choi Ja Yun
    • Journal of Korean Academy of Nursing
    • /
    • v.35 no.7
    • /
    • pp.1238-1247
    • /
    • 2005
  • Purpose: This study aimed at developing integrated clinical performance indicators(CPIs) through the analysis of quality improvement(QI) activities of a hospital and literature review about performance measures. Method: The CPIs were developed through the following three stages; 1)Identifying preliminary CPIs 2)A staff validity test in preliminary CPIs 3)Developing final CPIs. Result: One hundred twenty-three preliminary CPIs were developed through QI activities of the target hospital for 8 years and literature review. The results of the validity test for the preliminary CPIs supported ninety-one items. Sixty-two CPIs were selected through integration, reclassification and renaming. Then, eighteen items were deleted on account of an imprecise calculation method. Finally, forty-four CPIs were confirmed. They consisted of twenty-six items at the hospital level and eighteen items at the department level. Conclusion: CPIs can be used as criteria to evaluate the performance of healthcare organizations, and to decide the quality of healthcare for customers. This study may contribute to establishing an integrated system between QI activities and performance measurement of healthcare organizations.

GNSS Center of Excellence for Safety Critical Applications, Simulation, Test & Certifications - GAUSS

  • Evers, H.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.153-155
    • /
    • 2006
  • A major advantage of the area in and around Braunschweig is its concentration of major research institutes and small to large enterprises dealing with different modes of transportation. For many years, aviation has been a particular focus. The research institutes have aircraft and helicopters equipped especially for research projects, as well as other laboratory equipment, allowing simulation and testing of air traffic application both virtually and on real aircraft. In addition, with the Luftfahrtbundesamt (equivalent organization to FAA) and the Bundesstelle $f{\"{u}}r$ Flugunfalluntersuchung (equivalent to NTSB) both located at the Research Airport, it enables direct contact with two key air-traffic safety authorities. The institutes of DLR and the Technical University of Braunschweig are very active in rail transportation applications. Cooperation with the market leader in rail automation - Siemens Rail Automation, also located in Braunschweig - and with other companies in the Braunschweig region means that safety-critical road applications and mobility research is available due to the activities of a number of institutes. Cooperation with Volkswagen (VW) and other companies in the region ensure access to the market leaders' know-how in this sector. Current European activities within framework of the Galileo project offer particularly good opportunities for the Research Airport to leverage its expertise and position itself internationally as a specialist in safety-critical transport applications - the centre is an initiative of Niedersachsen and the Ministry of Economic Affairs, Labour and Transport Location and navigation plays a central role in all modes of transport - air, road and rail. The market is being revolutionized by the increasing integration of GNSS. The realization of the Galileo system will provide additional opportunities for the Research Airport: Galileo as a civil operated system offers service guarantees especially in the area of safety-critical applications in transportation. Notably standards, processes and authorizations related to the certification of safety-critical applications in the areas of air, road and rail transportation are still to be determined. GAUSS, located at the Research Airport Braunschweig, as an European centre of excellence for simulation, testing and certification of safety-critical applications can offer its expertise to validate the services guaranteed by the Galileo concessionaire.

  • PDF

Functional Electric Stimulation-assisted Biofeedback Therapy System for Chronic Hemiplegic Upper Extremity Function

  • Kim, Yeung Ki;Song, Jun Chan;Choi, Jae Won;Kim, Jang Hwan;Hwang, Yoon Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.6
    • /
    • pp.409-413
    • /
    • 2012
  • Purpose: Rehabilitative devices are used to enhance sensorimotor training protocols, for improvement of motor function in the hemiplegic limb of patients who have suffered a stroke. Sensorimotor integration feedback systems, included with these devices, are very good therapeutic frameworks. We applied this approach using electrical stimulation in stroke patients and examined whether a functional electric stimulation-assisted biofeedback therapy system could improve function of the upper extremity in chronic hemiplegia. Methods: A prototype biofeedback system was used by six subjects to perform a set of tasks with their affected upper extremity during a 30-minute session for 20 consecutive working days. When needed for a grasping or releasing movement of objects, the functional electrical stimulation (FES) stimulated the wrist and finger flexor or extensor and assisted the patients in grasping or releasing the objects. Kinematic data provided by the biofeedback system were acquired. In addition, clinical performance scales and activity of daily living skills were evaluated before and after application of a prototype biofeedback system. Results: Our findings revealed statistically significant gradual improvement in patients with stroke, in terms of kinematic and clinical performance during the treatment sessions, in terms of manual function test and the Purdue pegboard. However, no significant difference of the motor activity log was found. Conclusion: Hemiplegic upper extremity function of a small group of patients with chronic hemiparesis was improved through two weeks of training using the FES-assisted biofeedback system. Further research into the use of biofeedback systems for long-term clinical improvement will be needed.

Evaluation Model for the Stability of the Diagnostic Information System Incorporating the Quantitative Evaluation (정량적 평가를 도입한 정보시스템 안정성 진단 평가 모델)

  • Im, Hyeong-Do;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.313-316
    • /
    • 2016
  • Highly probable cause of the current turmoil critical national infrastructure and private enterprise information systems failures or national event of an accident, it is inevitable huge hit in corporate business as well as a significant impact on the national benefit. This is a trend subject to the stability of the national management information system has a significant impact on people and society, such as banking, telecommunications, transport and energy, which can be extended into a private institution. However, public and private ICT business through the development of Information system Audit or CMMI(Capability Maturity Model Integration) certification check the quality of the target system, but quality check on the reliability of the information system operations after construction is either not promoting met for some safety test results a situation that does not enabled by insufficient. By preventing the disorder or an accident of this study, the diagnostic reliability information systems through inspection and evaluation system development of information systems being established, and to minimize service confusion and study ways to ensure customer - oriented service.

  • PDF

Development of Real-time Mission Monitoring for the Korea Augmentation Satellite System

  • Daehee, Won;Koontack, Kim;Eunsung, Lee;Jungja, Kim;Youngjae, Song
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Korea Augmentation Satellite System (KASS) is a satellite-based augmentation system (SBAS) that provides approach procedure with vertical guidance-I (APV-I) level corrections and integrity information to Korea territory. KASS is used to monitor navigation performance in real-time, and this paper introduces the design, implementation, and verification process of mission monitoring (MIMO) in KASS. MIMO was developed in compliance with the Minimum Operational Performance Standards of the Radio Technical Commission for Aeronautics for Global Positioning System (GPS)/SBAS airborne equipment. In this study, the MIMO system was verified by comparing and analyzing the outputs of reference tools. Additionally, the definition and derivation method of accuracy, integrity, continuity, and availability subject to MIMO were examined. The internal and external interfaces and functions were then designed and implemented. The GPS data pre-processing was minimized during the implementation to evaluate the navigation performance experienced by general users. Subsequently, tests and verification methods were used to compare the obtained results based on reference tools. The test was performed using the KASS dataset, which included GPS and SBAS observations. The decoding performance of the developed MIMO was identical to that of the reference tools. Additionally, the navigation performance was verified by confirming the similarity in trends. As MIMO is a component of KASS used for real-time monitoring of the navigation performance of SBAS, the KASS operator can identify whether an abnormality exists in the navigation performance in real-time. Moreover, the preliminary identification of the abnormal point during the post-processing of data can improve operational efficiency.