• Title/Summary/Keyword: System Failure

Search Result 5,572, Processing Time 0.03 seconds

A Study of Reliability Analysis and Application on Naval Combat System Using Field Critical Failure Data (야전 치명고장자료를 이용한 함정전투체계 신뢰성 분석 및 활용 방안)

  • Kim, Young-Jin;Oh, Hyun-Seung;Choi, Bong-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.49-59
    • /
    • 2016
  • Naval combat system developed in-country is progressing at an alarming rate since 2000. ROK navy will be achieved all vessels that have combat system in the near future. The importance of System Engineering and Integrated Logistics Support based on reliability analysis is increasing. However, reliability analysis that everyone trusted and recognized is not enough and applied practically for development of Defense Acquisition Program. In particular, Existing Reliability Analysis is focusing on reliability index (Mean Time Between Failure (MTBF) etc.) for policy decision of defense improvement project. Most of the weapon system acquisition process applying in the exponential distribution simply persist unreality due to memoryless property. Critical failures are more important than simple faults to ship's operator. There are no confirmed cases of reliability analysis involved with critical failure that naval ship scheduler and operator concerned sensitively. Therefore, this study is focusing on Mean Time To Critical Failure (MTTCF), reliability on specific time and Operational Readiness Float (ORF) requirements related to critical failure of Patrol Killer Guided missile (PKG) combat system that is beginning of naval combat system developed in-country. Methods of analysis is applied parametric and non-parametric statistical techniques. It is compared to the estimates and proposed applications. The result of study shows that parametric and non-parametric estimators should be applied differently depending on purpose of utilization based on test of normality. For the first time, this study is offering Reliability of ROK Naval combat system to stakeholders involved with defense improvement project. Decision makers of defense improvement project have to active support and effort in this area for improvement of System Engineering.

Risk Analysis using Failure Data in Railway E&M System

  • Lee, Chang-Hwan;Song, Mi-Ok;Lim, Sung-Soo
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.34-37
    • /
    • 2010
  • In recent, the railway system consists of subsystems as rolling stock and infrastructures as signaling, telecommunication, power supply, overhead contact and platform screen door, etc. Furthermore, each subsystem has complicated interface so as not to understand these relationship. Consequently, to operate the railway system continuously with required safety and availability, the failure data should be corrected and analyzed systematically during operation. To achieve this object effectively, this paper presents the method which is evaluating the operational risk quantitatively using failure data, and selecting the critical equipment. Following this analysis, the improvement plan is established and applied to reduce the operational risk on system or equipment. From this study, the critical equipments of system could be determined and prioritized by risk analysis. Also, the effective maintenance to prevent critical failure could be implanted by this suggested methodology.

  • PDF

Optimum Periodic Preventive Maintenance Time for a System with Imperfect Maintenance (불완전보전을 고려한 시스템의 최적 정기 예방보전 시기)

  • 정영배
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.221-226
    • /
    • 1994
  • Almost preventive maintenance policies assumed that the system after pm has failure rate as before pm with probability p and as good as new with probability 1-p. This paper considers the s-expected cost of the model with imperfect periodic preventive maintenance that increasing minimal repair costs at failure and obtains the optimum periodic preventive maintenance time. Numerical example are shown in which the failure time of the system has gamma distribution.

  • PDF

Development and application of a floor failure depth prediction system based on the WEKA platform

  • Lu, Yao;Bai, Liyang;Chen, Juntao;Tong, Weixin;Jiang, Zhe
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • In this paper, the WEKA platform was used to mine and analyze measured data of floor failure depth and a prediction system of floor failure depth was developed with Java. Based on the standardization and discretization of 35-set measured data of floor failure depth in China, the grey correlation degree analysis on five factors affecting the floor failure depth was carried out. The correlation order from big to small is: mining depth, working face length, floor failure resistance, mining thickness, dip angle of coal seams. Naive Bayes model, neural network model and decision tree model were used for learning and training, and the accuracy of the confusion matrix, detailed accuracy and node error rate were analyzed. Finally, artificial neural network was concluded to be the optimal model. Based on Java language, a prediction system of floor failure depth was developed. With the easy operation in the system, the prediction from measured data and error analyses were performed for nine sets of data. The results show that the WEKA prediction formula has the smallest relative error and the best prediction effect. Besides, the applicability of WEKA prediction formula was analyzed. The results show that WEKA prediction has a better applicability under the coal seam mining depth of 110 m~550 m, dip angle of coal seams of 0°~15° and working face length of 30 m~135 m.

A Study on Reliability Assessment of Aircraft Structural Parts (항공기 동적 부분품에 대한 신뢰성 평가)

  • Kim, Eun-Jeong;Won, Jun-Ho;Choi, Joo-Ho;Kim, Tae-Gon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.38-43
    • /
    • 2010
  • A continuing challenge in the aviation industry is how to safely keep aircraft in service longer with limited maintenance budgets. Therefore, all the advanced countries in aircraft technologies put great efforts in prediction of failure rate in parts and system, but in the domestic aircraft industry is lack of theoretical and experimental research. Prediction of failure rate provides a rational basis for design decisions such as the choice of part quality levels and derating factors to be applied. For these reasons, analytic prediction of failure rate is essential process in developing aircraft structure. In this paper, a procedure for prediction of failure rate for aircraft structural parts is presented. Cargo door kinematic parts are taken to illustrate the process, in which the failure rate for Hook part is computed by using Monte Carlo Simulation along with Response Surface Model, and system failure rate is obtained afterwards.

The Construct of Service Error Matrix for the Effective Service Fail-Safe : Focusing Y Hotel in Daejeon (효과적인 서비스실패방지를 위한 서비스오류 매트릭스의 구성 : 대전지역 Y 호텔의 사례를 중심으로)

  • Oh, Se-Gu;Kim, Sun-Hyo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.4
    • /
    • pp.29-41
    • /
    • 2011
  • As industires are evolving into a more advanced type industrial system, service economy has been more emphasized. But with the expansion of the service economy, the failure of the service has also increased. Customers flee caused by the service failure leads to from simple problems like financial loss to serious problems like damaging corporate image. Therefore, if possible, the system providing defect-free service should be established. If this is not possible, preventive measures should be taken in order to minimize the failure. The study as a tool to prevent service failure presents the concepts "service error matrix." And to confirm whether this idea is practical or not, this study investigated the hotel, one of the leading service industries, about actually occurring service failure and applied to service error matrix suggested in this study. Finally service blueprint and Poka-yoke are completed in order to reduce service failure of Y hotel which was the object of the interview for this study.

A Study on Failure Rate Extraction of Power Distribution System Equipment (배전기기 고장률 추출에 관한 연구)

  • Moon, Jong-Fil;Kim, Jae-Chul;Lee, Hee-Tae;Chu, Cheol-Min;Ahn, Jae-Min
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.366-368
    • /
    • 2007
  • In this paper, the Time-varying Failure Rate (TFR) of power distribution system equipment is extracted from the recorded failure data of Korea Electric Power Corporation (KEPCO). For TFR extraction, it is used that the fault data accumulated by KEPCO during 10 years. The TFR is approximated to bathtub curve using the exponential (random failure) and Weibull (aging failure) distribution function. In addition, Kaplan-Meier estimation is applied to TFR extraction because of incomplete failure data of KEPCO. Finally, Probability plot and regression analysis is applied. It is presented that the extracted TFR is more effective and useful than Mean Failure Rate (MFR) through the comparison between TFR and MFR.

  • PDF

A Method of Failure Detection Rate Calculation for Setting up of Guided Missile Periodic Test and Application Case (유도탄 점검주기 설정을 위한 고장 탐지율 산출 방안 및 적용 사례)

  • Choi, In-Duck
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.2
    • /
    • pp.28-35
    • /
    • 2019
  • Since guided missiles with the characteristics of the one-shot system remain stored throughout their entire life cycle, it is important to maintain their storage reliability until the launch. As part of maintaining storage reliability, period of preventive test is set up to perform preventive periodic test, in this case failure detection rate has a great effect on setting up period of preventive test to maintain storage reliability. The proposed method utilizes failure rate predicted by the software on the basis of MIL-HDBK-217F and failure mode analyzed through FMEA (Failure Mode and Effect Analysis) using data generated from the actual field. The failure detection rate of using the proposed method is applied to set periodic test of the actual guided missile. The proposed method in this paper has advantages in accuracy and objectivity because it utilizes a large amount of data generated in the actual field.

Proposal of a Design Method of slope Reinforced by the Earth Retention System (활동억지시스템으로 보강된 사면의 설계법 제안)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • In this study, the design method of slope reinforced by the earth retention systems were systematically developed, and the flow chart of design procedure fur each system were constructed to design the slope rationally. The proposed design method is composed of 5 steps such as field condition investigation step, slope design step, landslide occurrence prediction step, slope failure scale estimation step and reinforcement countermeasure selection step. The quantitative standard of slope failure scale was established based on the arrangement of various overseas standards which is estimating the slope failure, and the analysis of slope failure scale which is occurred in the country. The slope failure scale is classified into three categories the small scale of slope failure is less than $150m^3$ of slope failure volume, the middle scale of slope failure is from $150m^3$ to $900m^3$ and the large scale of slope failure is more than $900m^3$. The earth retention system could be selected by the proposed slope failure scale based on the slope failure volume. Meanwhile, the design methods of earth retention system such as piles, soil nails and anchors were developed. The optimal countermeasure for slope stability could be proposed using above design methods.

Patterns and Characteristics of Fatigue Failure in Cruciform Fillet Weld Joint (십자형 필릿 용접부에서의 피로파괴 형상과 특성)

  • Lee, Yong-Bok;Chung, Joon-Ki;Park, Sang-Heup
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2011
  • The proportion of the welding in the production process of machinery, buildings and marine structures is increasing and the joining are mainly conducted by butt and fillet weld. In the case of fillet weld, the shape of structures is complicated depending on the constraint on the geometry of the structures, therefore, the full penetration is mostly difficult. Accordingly, it is necessary to establish safe and economical criteria of design of the structures through the strength based on the penetration state of the fillet weld. Patterns of fatigue failure in cruciform fillet weld jont appear in the form of the root, toe and mixed failure. In the case of toe and mixed failure, the fatigue strength is higher than root failure. Therefore, we have to make the enough depth of penetration or perform the welding work through improving the fatigue strength of cruciform joints in welded structures. So it is necessary to optimize the penetrated depth in the range of the possible mixed failure and find the way in the cost-effective design to lessen the amount of the welding work.