• 제목/요약/키워드: System Failure

Search Result 5,572, Processing Time 0.03 seconds

A Study on the Introduction of Early Warning System for Slope Failure (사면붕괴 예.경보시스템 도입에 관한 연구)

  • Kim, Hak-Seung;Cho, Nam-Jun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.9-17
    • /
    • 2004
  • In recent years slope failure due to heavy rainfalls or local downpours usually accompanied by typhoons has increasingly occurred in Korea. Also, the damages caused by slope failure have a tendency to be more disastrous than before. This study has been conducted to prepare an early warning system for slope failure by : (1) analyzing types and causes of slope failure, (2) examining the published evaluation criteria for slope stability, (3) estimating slope stability by considering the properties of slope-forming materials as well as the topographical and geological properties of slopes, and (4) determining the most important variables of affecting the stability of the slope under consideration. The data on the variations of slope conditions measured by an automatic in-situ measurement system and then transmitted to the central analysis system by using an internet. The most important variables can be back-calculated in the central system and compared with the values for the first and second management criteria. These management criteria should be modified and corrected continuously in the future by accumulated data and knowledge related to the early warning system for slope failure.

DEVELOPMENT OF AN OPERATION STRATEGY FOR A HYBRID SAFETY INJECTION TANK WITH AN ACTIVE SYSTEM

  • JEON, IN SEOP;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.443-453
    • /
    • 2015
  • A hybrid safety injection tank (H-SIT) can enhance the capability of an advanced power reactor plus (APR+) during a station black out (SBO) that is accompanied by a severe accident. It may a useful alternative to an electric motor. The operations strategy of the H-SIT has to be investigated to achieve maximum utilization of its function. In this study, the master logic diagram (i.e., an analysis for identifying the differences between an H-SIT and a safety injection pump) and an accident case classification were used to determine the parameters of the H-SIT operation. The conditions that require the use of an H-SIT were determined using a decision-making process. The proper timing for using an H-SIT was also analyzed by using the Multi-dimensional Analysis of Reactor Safety (MARS) 1.3 code (Korea Atomic Energy Research Institute, Daejeon, South Korea). The operation strategy analysis indicates that a H-SIT can mitigate five types of failure: (1) failure of the safety injection pump, (2) failure of the passive auxiliary feedwater system, (3) failure of the depressurization system, (4) failure of the shutdown cooling pump (SCP), and (5) failure of the recirculation system. The results of the MARS code demonstrate that the time allowed for recovery can be extended when using an H-SIT, compared with the same situation in which an H-SIT is not used. Based on the results, the use of an H-SIT is recommended, especially after the pilot-operated safety relief valve (POSRV) is opened.

A Study on Reliability Analysis of Electric Railway Catenary System using FMECA (FMECA를 통한 전차선로 가선시스템의 신뢰도 분석에 관한 연구)

  • Youn, Eung-Kyu;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1618-1625
    • /
    • 2015
  • The reliability of catenary system is very important for uninterrupted train operation as it supplies electric power to train without redundant facilities. This paper provides a systematic approach to the reliability analysis of the catenary system based on FMECA procedures defined by global standards such as MIL Std 1692a and IEC 60812. Field failure data collected from the operation and maintenance of high-speed railway catenary system for 9 years are used to derive critical failure modes and to evaluate the criticality of the failure modes. Evaluation of the criticality are carried out by quantitative procedures defined by MIL Std 1692a and by criticality matrix defined by IEC 60812. FMECA results suggests that three critical failure modes should be checked carefully during maintenance work, which include strand break of dropper and voltage equalizing wire, power supply failure of feeder. Maintenance procedure of catenary system in order of importance is suggested too. These results can be applied to maintenance planning and design of catenary system to improve the reliability of electric railway system.

Seismic and collapse analysis of a UHV transmission tower-line system under cross-fault ground motions

  • Tian, Li;Bi, Wenzhe;Liu, Juncai;Dong, Xu;Xin, Aiqiang
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.445-457
    • /
    • 2020
  • An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.

A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denoising, PCA and SPRT

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.483-497
    • /
    • 2001
  • In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods is developed to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique is applied to remove noise components in input signals into the neuro-fuzzy system The PCA is used to reduce the dimension of an input space without losing a significant amount of information. The PCA makes easy the selection of the input signals into the neuro-fuzzy system. Also, a lower dimensional input space usually reduces the time necessary to train a neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The residuals between the estimated signals and the measured signals are used to detect whether the sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level and the hot-leg flowrate sensors in pressurized water reactors.

  • PDF

Repair policies of failure detection equipments and system availability

  • Na, Seongryong;Bang, Sung-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.151-160
    • /
    • 2022
  • The total system is composed of the main system (MS) and the failure detection equipment (FDE) which detects failures of MS. The analysis of system reliability is performed when the failure of FDE is possible. Several repair policies are considered to determine the order of repair of failed systems, which are sequential repair (SQ), priority repair (PR), independent repair (ID), and simultaneous repair (SM). The states of MS-FDE systems are represented by Markov models according to repair policies and the main purpose of this paper is to derive the system availabilities of the Markov models. Analytical solutions of the stationary equations are derived for the Markov models and the system availabilities are immediately determined using the stationary solutions. A simple illustrative example is discussed for the comparison of availability values of the repair policies considered in this paper.

Strength Analysis of Mark III Cargo Containment System using Anisotropic Failure Criteria

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.211-226
    • /
    • 2015
  • Membrane type Mark III cargo containment system (CCS) is considered in this study to investigate its strength capability under applied loads due to liquefied natural gas (LNG) cargo. A rectangular plated structure supported by inner hull structure is exemplified from Mark III CCS according to classification society's guidance and it is assumed as multi-layered structure by stacking plywood, triplex, reinforced polyurethane (PU) foam and series of mastic upon inner hull structure. Commercially available general purpose finite element analysis package is used to have reliable FE models of Mark III CCS plate. The FE models and anisotropic failure criteria such as maximum stress, Hoffman, Hill, Tsai-Wu and Hashin taking into account the direction dependent material properties of Mark III CCS plate components and their material properties considering a wide variation of temperature due to the nature of LNG together form the strength analysis procedure of Mark III CCS plate. Strength capability of Mark III CCS plate is understood by its initial failure and post-initial failure states. Results are represented in terms of failure loads and locations when initial failure and post-initial failures are occurred respectively. From the results the basic design information of Mark III CCS plate is given.

A Study on the Maintenance Policy Considering the Failure Data of the EMU Braking System and the Cost Function (전동차 제동장치의 고장데이터와 비용함수를 고려한 유지보수 정책에 관한 연구)

  • Han, Jae-Hyun;Kim, Jong-Woon;Koo, Jeong-Seo
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.13-19
    • /
    • 2015
  • Railway vehicle equipment goes back again to the state just before when failure by the repair. In repairable system, we are interested in the failure interval. As such, a statistical model of the point process, NHPP power law is often used for the reliability analysis of a repairable system. In order to derive a quantitative reliability value of repairable system, we analyze the failure data of the air brake system of the train line 7. The quantitative value is the failure intensity function that was modified, converted into a cost-rate function. Finally we studied the optimal number and optimal interval in which the costs to a minimum consumption point as cost-rate function. The minimum cost point was 194,613 (won/day) during the total life cycle of the braking system, then the optimal interval were 2,251days and the number of optimal preventive maintenance were 7 times. Additionally, we were compared to the cost of a currently fixed interval(4Y) and the optimum interval then the optimal interval is 3,853(won/day) consuming smaller. In addition, judging from the total life, "fixed interval" is smaller than 1,157 days as "optimal interval".

Risk Assessment for the Failure of an Arch Bridge System Based upon Response Surface Method(I): Component Reliability (응답면 기법에 의한 아치교량 시스템의 붕괴 위험성평가(I): 요소신뢰성)

  • Cho, Tae-Jun;Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.74-81
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method(RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method.

Simulation Procedure for Estimating the Reliability of a System with Repairable Units+

  • S. Y. Baek;T.J. Lim;J. S. Hong;C. H. Lie;Park, Chang K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.691-698
    • /
    • 1996
  • This paper propose a procedure to estimate the system lifetime distribution using simulation method in a parametric framework and also develop the criterion for terminating the simulation. We assume that a system is composed of many components whose lifetime and repair time distributions are general, and repair of each component is imperfect or not. General simulation algorithms can not be adopted for this case, due to the dependency of successive operating times and the discontinuity in base line intensity function of failure process. Then we propose algorithms for generating failure times subject to imperfect repair. We develop the event time tracking logic for identifying the system failure time, and also develop the criterion for terminating the simulation. Our procedure is composed of two phases. The first phase of the procedure is to generate the system failure times from the inputs. The second phase is to estimate the lifetime distribution of the system. The best model is selected by a fully automated procedure among well-known parametric families, and the required parameters are estimated. We give examples to show the accuracy of our procedure and the effect of repair effect of components to system MTTF(Mean Time To Failure).

  • PDF