• Title/Summary/Keyword: System Equation of Motion

Search Result 752, Processing Time 0.03 seconds

Hand/Eye calibration of Robot arms with a 3D visual sensing system (3차원 시각 센서를 탑재한로봇의 Hand/Eye 캘리브레이션)

  • 김민영;노영준;조형석;김재훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.76-76
    • /
    • 2000
  • The calibration of the robot system with a visual sensor consists of robot, hand-to-eye, and sensor calibration. This paper describe a new technique for computing 3D position and orientation of a 3D sensor system relative to the end effect of a robot manipulator in an eye-on-hand robot configuration. When the 3D coordinates of the feature points at each robot movement and the relative robot motion between two robot movements are known, a homogeneous equation of the form AX : XB is derived. To solve for X uniquely, it is necessary to make two robot arm movements and form a system of two equation of the form: A$_1$X : XB$_1$ and A$_2$X = XB$_2$. A closed-form solution to this system of equations is developed and the constraints for solution existence are described in detail. Test results through a series of simulation show that this technique is simple, efficient, and accurate fur hand/eye calibration.

  • PDF

Dynamic Analysis of Spindle System with Magnetic Coupling(ll) (마그네틱 커플링을 장착한 축계의 동적해석(II))

  • Kim, S.G.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.107-113
    • /
    • 1995
  • Using the mathematical model of the torsional vibration in spindle system with magnetic coupling, which was proposed in the paper of dynamic analysis of spindle system with magnetic coupling(l), we derive the equations of the motion and the form of the derived equations represents Duffing equation. Numerical analyses are executed in many conditions, namely the various types in magnetic coupling, changes of the gap between driver and follower. To verify the results of the therorectical analyses, a precision dynamic drive system is manufactured and methods of the test to measure the torsional vibration of the spindle system with magnetic coupling are presented ad thests in various conditions are carried out.

  • PDF

The steady-state vibration analysis of piping system by applying displacement assumption method (변위 가정법을 이용한 배관 시스템의 정상 상태 진동 해석)

  • Lee, Seong-Hyeon;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.827-830
    • /
    • 2011
  • The equation of motion for the piping system conveying harmonically pulsating fluid is presented. When pulsating fluid flows, the properties of this system like mass, stiffness and damp is changing according to fluid fluctuation. To solve the steady-state time response of this system, numerical integration method of differential equation was usually used. But this method has some problem such time consuming method and difficulty of converging. Therefore this research suggests reliable and efficient numerical method to solve steady-state time response of piping system by using displacement assumption method.

  • PDF

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

The Stability Analysis of Non-Conservative System including Damping Effects (감쇠효과(減衰效果)를 고려한 비보존력계(非保存力系) 안정성(安定性) 해석(解析))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.57-65
    • /
    • 1990
  • The finite element menthod for the investigation of the static and dynamic stability of the plane framed structures subjected to non-conservative forces is presented. By using the Hermitian polynomial as the shape function, the geometric stiffness matrix, the load correction stiffness matrix for non-conservative forces, and the matrix equation of internal and external damping are derived. Then, a matrix equation of the motion for the non-conservative system is formulated and the critical divergence and flutter loads are determined from this equation.

  • PDF

Motion Reduction of Rectangular Pontoon Using Sloshing Liquid Damper (슬로싱 액체 댐퍼를 이용한 사각형 폰툰의 운동 저감)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • The interaction between a sloshing liquid damper (SLD) tank and a rectangular pontoon was investigated under the assumption of the linear potential theory. The eigenfunction expansion method was used not only for the sloshing problem in the SLD tank but also for analyzing the motion responses of a rectangular pontoon in waves. If the frictional damping due to the viscosity of the SLD tank was ignored, the effect of the SLD appeared to be an added mass in the coupled equation of motion. The installation of the SLD tank had a greater effect on the roll motion response than the sway and heave motion of the pontoon. One resonance peak for rolling motion showed up in the case of a frozen liquid in the SLD tank. However, if liquid motion in the SLD tank was allowed, two peaks appeared around the first natural frequency of the fluid in the SLD tank. In particular, the peak value located in the low-frequency region had a relatively large value, and the peak frequency located in the high-frequency region moved into the high-frequency region as the depth of the liquid in the tank increased.

Structure and Motion Estimation with Expectation Maximization and Extended Kalman Smoother for Continuous Image Sequences (부드러운 카메라 움직임을 위한 EM 알고리듬을 이용한 삼차원 보정)

  • Seo, Yong-Duek;Hong, Ki-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.245-254
    • /
    • 2004
  • This paper deals with the problem of estimating structure and motion from long continuous image sequences, applying the Expectation Maximization algorithm based on extended Kalman smoother to impose the time-continuity of the motion parameters. By repeatedly estimating the state transition matrix of the dynamic equation and the parameters of noise processes in the dynamic and measurement equations, this optimization gives the maximum likelihood estimates of the motion and structure parameters. Practically, this research is essential for dealing with a long video-rate image sequence with partially unknown system equation and noise. The algorithm is implemented and tested for a real image sequence.

A method to evaluate the frequencies of free transversal vibrations in self-anchored cable-stayed bridges

  • Monaco, Pietro;Fiore, Alessandra
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.125-146
    • /
    • 2005
  • The objective of this paper is setting out, for a cable-stayed bridge with a curtain suspension, a method to determine the modes of vibration of the structure. The system of differential equations governing the vibrations of the bridge, derived by means of a variational formulation in a nonlinear field, is reported in Appendix C. The whole analysis results from the application of Hamilton's principle, using the expressions of potential and kinetic energies and of the virtual work made by viscous damping forces of the various parts of the bridge (Monaco and Fiore 2003). This paper focuses on the equation concerning the transversal motion of the girder of the cable-stayed bridge and in particular on its final form obtained, restrictedly to the linear case, neglecting some quantities affecting the solution in a non-remarkable way. In the hypotheses of normal mode of vibration and of steady-state, we propose the resolution of this equation by a particular method based on a numerical approach. Respecting the boundary conditions, we derive, for each mode of vibration, the corresponding frequency, both natural and damped, the shape-function of the girder axis and the exponential function governing the variability of motion amplitude in time. Finally the results so obtained are compared with those deriving from the dynamic analysis performed by a finite elements calculation program.

A study on the modeling of a hexacopter

  • Le, Dang-Khanh;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1023-1030
    • /
    • 2015
  • The purpose of this paper is to present the basic mathematical modeling of a hexacopter, which could be used to develop proper methods for stabilization and trajectory control. A hexacopter consists of six rotors with three pairs of counter-rotating fixed-pitch blades. This mechanism is an under-actuated, dynamically unstable, six-degrees-of-freedom system. The whole motion of this object consists of translational and rotational motion in three dimensions, where the translational motion is created by changing the direction and magnitude of the upward propeller thrust. The hexacopter is controlled by adjusting the angular velocities of the rotors, which are spun by electric motors. It is assumed to be a rigid body; thus, the differential equation of the hexacopter dynamics can be derived from the Newton-Euler equation. The Euler-angle parametrization of the three-dimensional rotations contains singular points in the coordinate space that can cause failure of both the dynamical model and control. In order to avoid singularities, the rotations of the hexacopter are parametrized in terms of quaternions. This choice has been made considering the linearity of the quaternion formulation and their stability and efficiency. Further, control simulation of a hexacopter applying cascaded-PID control is also presented in this paper.

Constructing Equations of Motion for a Dynamic System from Modal Parameters (모달 파라미터를 이용한 동적 시스템의 운동 방정식 구성)

  • Hwang, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The numerical verifications for the simple mass-spring-damper system and the cantilevered beam prove the efficiency and accuracy of the present method.