• Title/Summary/Keyword: System Code

Search Result 6,238, Processing Time 0.032 seconds

Design and Development of a Novel High Resolution Absolute Rotary Encoder System Based on Affine n-digit N-ary Gray Code

  • Paul, Sarbajit;Chang, Junghwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.943-952
    • /
    • 2018
  • This paper presents a new type of absolute rotary encoder system based on the affine n-digit N-ary gray code. A brief comparison of the existing encoder systems is carried out in terms of resolution, encoding and decoding principles and number of sensor heads needed. Using the proposed method, two different types of encoder disks are designed, namely, color-coded disk and grayscale coded disk. The designed coded disk pattern is used to manufacture 3 digit 3 ary and 2 digit 5 ary grayscale coded disks respectively. The manufactured disk is used with the light emitter and photodetector assembly to design the entire encode system. Experimental analysis is done on the designed prototype with LabVIEW platform for data acquisition. A comparison of the designed system is done with the traditional binary gray code encoder system in terms of resolution, disk diameter, number of tracks and data acquisition system. The resolution of the manufactured system is 3 times higher than the conventional system. Also, for a 5 digit 5 ary coded encoder system, a resolution approximately 100 times better than the conventional binary system can be achieved. In general, the proposed encoder system gives $(N/2)^n$ times better resolution compared with the traditional gray coded disk. The miniaturization in diameter of the coded disk can be achieved compared to the conventional binary systems.

Development of Code System for Systematic Accumulation and Utilization of Disaster Safety Data (재난안전 데이터의 체계적인 축적·활용을 위한 코드체계 개발)

  • Jung, In-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.167-175
    • /
    • 2018
  • To cope with the increasing number of natural disasters in recent years, managers in the National Disaster and Safety Status Control Center, who have considerable experience and skills, are regarded highly important. Although the National Disaster and Safety Status Control Center oversees the disaster-status control tasks in preparation for various natural and social disasters, there is little data due to the frequent replacement of managers. Therefore, this study developed a disaster-safety code system that tracks and manages disaster information, because the current record management and amount of information sharing remains very low. Among 22 natural and social disaster types, this study targeted four types of disasters: heavy snow, strong winds, high seas, and heavy rain. The final disaster-safety data code system was proposed through the following processes: analysis of the code systems of disaster areas in Korea and overseas, setup of the implementation of directions, development of the classification system, and categorization. For the systematic accumulation of data, the four code systems were integrated into one. A prototype system was developed and operated to verify the validity of the proposed code system. The results showed that data were accumulated and services were provided accordingly with respect to the proposed code system. If past data are accumulated and utilized according to the proposed code system in this study, it will be helpful in the decision making process to respond to new types of disasters, based on past experiences.

Introductions of the New Code of Fungal Nomenclature and Recent Trends in Transition into One Fungus/One Name System (균류의 새로운 명명 규약과 일균일명 체계로의 전환)

  • Hong, Seung-Beom;Kwon, Soon-Wo;Kim, Wan-Gyu
    • The Korean Journal of Mycology
    • /
    • v.40 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • Nomenclatural code for fungi was dramatically modified in the 18th International Botanical Congress (IBC) held in Melbourne, Australia in July 2011. Its name was changed into International Code of Nomenclature for Algae, Fungi and Plants (ICN), which was formerly called as International Code of Botanical Nomenclature (ICBN) of the Vienna Code of 2005. The most important change for fungi is abandoning dual nomenclature and introducing one fungus/one name system (2013. 1). Since more than 10,000 species of fungal names should be renamed based on this new classification system (one fungus/one name system), it is challenging to both mycologists and taxonomic users such as plant pathologists and food scientists. Here, we introduced background, progress and future plan for its transition into one fungus/one name system. The new code is allowing electronic-only publication of names of new taxa (2102. 1) and the requirement for a Latin validating diagnosis was changed to allow either English or Latin for the publication of a new name (2011. 1). Furthermore, pre-publication deposit of key nomenclatural information in a recognized repository is mandatory in ICN (2013. 1). The aims of this manuscript are to introduce new code of fungal nomenclature and recent trends in one fungus/one name system to Korean mycological society.

Serially Concatenated Space-Time Code using Iterative Decoding of High Data Rate Wireless Communication (고속 무선 통신을 위한 반복 복호 직렬 연쇄 시.공간 부호)

  • 김웅곤;구본진;양하영;강창언;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.519-527
    • /
    • 2000
  • This paper suggests and analyzes the Serially Concatenated Space-Time Code(SCSTC) with the possibility of a efficient high-speed transmission in a band limited channel. The suggested code has a structure that uses the interleaver to connect the space-time code as an inner code and the convolutional code as a outer code serially. This code keeps the advantage of high-speed transmission and also has the high BER performance. The performance of the suggested system is compared with the conventional bandwidth efficient trellis coded modulation, such as a Serially Concatenated Trellis Coded Modulation (SCTCM) and a Turbo-Trellis Coded Modulation(Turbo-TCM). The results show that the suggested system has a 2.8dB and 3dB better BER performance than SCTCM and Turbo-TCM respectively in case of the transmission rate 2b/s/Hz in fading channel.

  • PDF

A Basic Study on Development of ISM Code Operation Evaluation Model Using AHP (AHP를 이용한 ISM Code 운영평가 모형 개발에 관한 기초적 연구)

  • 신철호;노창균
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.2
    • /
    • pp.47-52
    • /
    • 2003
  • This study conducted a basic study to develop ISM Code operation evaluation module, which is part of development of Safety Management System(ISM Code) Implementation supporting module. In particular, the significant of this study is that it established AHP operation evaluation analysis process, the design of questionnaire, and the hierarchical structure of operation evaluation model standard, focusing on the development of ISM Code operation evaluation module. Also, this study has its value in the point that it attempted to apply AHP scheme, which is part of the main decision­making in management science field, to develop operation evaluation module.

  • PDF

Bar-Code Shape UHF RFID Tag Antenna (바코드 모양의 UHF RFID 태그 안테나 설계)

  • Jeon, Byung-Don;Chung, You-Chung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.131-134
    • /
    • 2012
  • A bar-code shape UHF RFID tag antenna is designed and fabricated with silver conductive ink. It can be recognize by both bar-code scanner and RFID reader. The bar-code shape is taken from a general box of a product, and the product code of the bar-code is used for the antenna design. The tag antenna is fabricated with silver conductive ink using a T-matching structure. The designed tag antenna is satisfied with bar-code system and RFID system simultaneously. The input reflection coefficient characteristics and the reading range pattern are measured. The peak reading range is about 111 cm, which is long enough.

A Study on a High-Speed $mB_1Z$ Transmission Line Code (고속 $mB_1Z$ 전송로부호에 관한 연구)

  • 유봉선;원동호;김병찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.4
    • /
    • pp.347-356
    • /
    • 1987
  • This paper is to propose a new line code suitable for a high speed unipolar pulse transmission system, such as a high speed optical digital transmission system. The original information speed can be converted into the transmission speed $\frac{(m+1)}{m}$ by the speed converter. Then this code, named mBiZ code, is generated by means of an Exclusive NOR between the bit stream inserted a space into every m bits and the bit stream delayed by the time slot allocated a single bit at the output coded sequence. Therefore, a mBiZ code can reduce a redundancy in the line code for transmission and its conversion circuits can be devised easily. The mBiZ code can also suppress undesirable long consecuitive identical digits and make line code balance in the mark and space ratio. Therefore, high frequency and low frequency components in power spectrum of a mBiZ code can be suppessed.

  • PDF

Design of Low-Density Parity-Check Codes for Multiple-Input Multiple-Output Systems (Multiple-Input Multiple-output system을 위한 Low-Density Parity-Check codes 설계)

  • Shin, Jeong-Hwan;Chae, Hyun-Do;Han, In-Duk;Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.587-593
    • /
    • 2010
  • In this paper we design an irregular low-density parity-check (LDPC) code for multiple-input multiple-output (MIMO) system, using a simple extrinsic information transfer (EXIT) chart method. The MIMO systems considered are optimal maximum a posteriori probability (MAP) detector. The MIMO detector and the LDPC decoder exchange soft information and form a turbo iterative receiver. The EXIT charts are used to obtain the edge degree distribution of the irregular LDPC code which is optimized for the MIMO detector. It is shown that the performance of the designed LDPC code is better than that of conventional LDPC code which was optimized for either the Additive White Gaussian Noise (AWGN) channel or the MIMO channel.

Performance analysis on the complexity of turbo code with short frame sizes (프레임 크기가 작은 터보 코드의 복잡도에 대한 성능 분석)

  • Kim, Yeun-Goo;Ko, Young-Hoon;Kim, Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.1046-1051
    • /
    • 1999
  • It is well known that Parallel Concatenated Convolutional Codes(turbo codes) has a good performance for long block sizes. This thesis has analyzed the performance of turbo code which is based on voice or control frames with short frame sizes in the future mobile communication system. Also, at the similar decoding complexity, the performance of turbo code and convolutional codes in the speech/control frames, and the applicability of this system are considered. As a result, turbo code in short frame sizes present the performance of a BER of $10^{-3}$ or more over 3 iterations in the future mobile communication system. However, at a BER of $10^{-3}$ , if the same complexity is considered, the performance of rate 1/2 turbo code with K = 5 is better than that of convolutional code with K = 9 at low $E_b/N_0$, and the performance of turbo code with K = 3 is superior to that of convolutional code with K = 7. Rate 1/3 turbo code with K = 3 and 5 have similar to performance of rate 1/2 turbo code.

  • PDF

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.