• Title/Summary/Keyword: Synthetic silica

Search Result 93, Processing Time 0.029 seconds

Synthesis of Nano-Clay and The Application for Nanocomposite (나노클레이의 합성 및 나노복합재로의 응용)

  • Jeong Soon-Yong;Jeong Eon-Il
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.122-130
    • /
    • 2005
  • Layered silicate was synthesized at hydrothermal condition from silica adding to various materials. Nano-clay was synthesized by intercaltion of various amine compounds into synthetic layered silicate. The products were analysed by XRD, SEM, and FT-IR in order to examine the condition of synthesis and intercalation. From the results, it was confirmed that kaolinite was synthesized from precipitated silica and gibbsite at $220^{\circ}C$ during 10 days, and hetorite was synthesized from silica sol at $100^{\circ}C$ during 48 h. Na-Magadiite was synthesized from silica gel at $150^{\circ}C$ during 72 h, and Na-kenyaite was synthesized from silica gel at $160^{\circ}C$ during 84 h. Nano-clay was prepared using synthetic layered silicate intercalated with various amine compounds. Kenyaite was easily intercalated by various organic compounds, and has the highest basal-spacing value among other layered silicates. Basal-spacing was changed according to the length of alkyl chain of amine comopounds. Polymer can be easily intercalated by dispersion with large space of interlayer. Finally, epoxy/nano-clay nanocomposite can be easily prepared.

Silica Glass Preparation by The Sol-Gel Process and The Effects of Glycerol as a DCCA (졸-겔법에 의한 실리카 유리의 제조와 DCCA로서의 Glycerol의 영향)

  • 이경희;이병하;이헌식;오부근
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.479-487
    • /
    • 1988
  • In this study we studied the function of Glycerol as a DCCA(Drying Control Chemical Additives) in the preparation of silica bulk glas through Sol-Gel method. We used TEOS(Tetra Ethyl Ortho Silicate) and maintained the mixing ratio of TEOS : H2O : EtOH : HCI as 1 : 4 : 4 : 0.0007(mol) and varied glycerol input quantity from 0.1vol% considering the ethnaol input quantity as 100vol%. We investigated the changes from Sol-Gel Synthetic solutions to the glass using DT-TG, FT-IR and other instruments. The results obtained from this experiment showed that the dried gels made from the synthetic solutions containing 0.1-1.0vol% of glycerol were easily heat-treated up to 85$0^{\circ}C$ so that transparant bulk silica glass was prepared.

  • PDF

A Comparative Study on Morphologies and Characteristics of Silica Nanoparticles Recycled from Silicon Sludge Waste of Semiconductor Process Based on Synthesis Methods (반도체 공정에서 발생하는 폐실리콘 슬러지의 재활용을 통한 실리카 나노입자의 제조 및 합성법에 따른 형상 및 특성 비교 연구)

  • Jiwon Kim;Minki Sa;Yeon-Ryong Chu;Suk Jekal;Ha-Yeong Kim;Chan-Gyo Kim;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.5-13
    • /
    • 2023
  • In this study, a comparative study is conducted on the synthesis methods for silica nanoparticle employing the silicon sludge waste generated from the semiconductor manufacturing processes. Specifically, acid-washed silicon sludge wastes with no impurities are employed as the precursors of sol-gel and hydrothermal methods for silica nanoparticles preparation. The morphologies and properties of silica nanoparticles synthesized via two synthetic methods are examined by various analysis methods. As a result, silica nanoparticles from the sol-gel method are fabricated with high purity and uniform shape, while the hydrothermal method exhibits advantages in yield and ease of synthetic process. This comparative study offers detailed experimental results on the two synthetic methods for silica nanoparticle synthesis, which may contribute to the establishment of manufacturing high-value materials using the by-products generated in the semiconductor process.

Studies on the Chemical Treatment of Silica for Synthetic Rubber Reinforcement(I) - Silica Treatment by MDI- (합성(合成)고무 보강제(補强劑) Silica의 화학처리(化學處理)에 관(關)한 연구(硏究)(I) -Silica의 MDI 처리(處理)-)

  • Jin, Je-Yong;Kim, Hong-Seon;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.30 no.1
    • /
    • pp.20-31
    • /
    • 1995
  • The purpose of this study is to investigate the reinforcement of inorganic filler silica, treated by MDI about SBR vulcanizate. The characteristics of vulcanization, physical properties, surface properties and dynamic properties were investigated after mixing those silica with SBR and unmodified silica with SBR. In this experiment only the quantity of silica was variable. In the vulcanization characteristics tested by rheometer, S-series showed the fastest scorch $time(t_{10})$ and optimum cure $time(t_{90})$. And in test or tensile characteristics hardness, tensile strength, 100%, 300% modulus and elongation were all appeared in the order of M>S-series. The characteristic bonding of urea between unmodified silica and MDI could be confirmed in IR spectrum. The shapes of silicas treated chemically were observed by SEM. And the dispersion of the filler in the SBR composite was uniform. In the dynamic characteristics by the RDS, the order of elastic modulus G' values was as follows : M>S-series, and also the order of damping values was as follows : M>S-series.

  • PDF

Strengthening of cement blended soft clay with nano-silica particles

  • Thomas, Geethu;Rangaswamy, Kodi
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.505-516
    • /
    • 2020
  • In recent years, Nano-technology significantly invaded the field of Geotechnical engineering, particularly in soil stabilisation techniques. Stabilisation of weak soil is envisioned to modify various soil characteristics by the addition of natural or synthetic materials into the virgin soil. In the present study, laboratory experiments were executed to investigate the influence of nano-silica particles in the consistency limits, compressive strength of the soft clay blended with cement. The results revealed that the high compressibility behaviour of soft clay modified to medium-stiff condition with fewer dosages of cement and nano-silica. The mechanism behind the strength development is verified with the previous researches as well as from Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction test (XRD) and Scanning Electron Microscopy (SEM) analysis. Based on the results, the presence of nano-silica in soft clay blended with cement has a positive effect on the behaviour of soil. This technique proves to be very economical and less detrimental to the environment.

Synthesis of Double Mesoporous Silica Nanoparticles and Control of Their Pore Size (이중 다공성 실리카 나노입자 합성 및 공극 크기 조절)

  • Park, Dae Keun;Ahn, Jung Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.167-169
    • /
    • 2021
  • In this study, monodispersive silica nanoparticles with double mesoporous shells were synthesized, and the pore size of synthetic mesoporous silica nanoparticles was controlled. Cetyltrimethylammonium chloride (CTAC), N, N-dimethylbenzene, and decane were used as soft template and induced to form outer mesoporous shell. The resultant double mesoporous silica nanoparticles were consisted of two layers of shells having different pore sizes, and it has been confirmed that outer shells with larger pores (Mean pore size > 2.5 nm) are formed directly on the surface of the smaller pore sized shell (Mean pore size < 2.5 nm). It was confirmed that the regulation of the molar ratio of pore expansion agents plays a key role in determining the pore size of double mesoporous shells.

The Study of Optimized Compounds Containing Silica and Coupling Agent to Improve the Physical Properties of Rubber Compounds (고무물성 향상을 위한 실리카 및 실란 커플링제의 최적배합에 관한 연구)

  • Oh, Sae-Chul;Go, Jin-Hwan;Lee, Seag;Park, Nam-Cook
    • Elastomers and Composites
    • /
    • v.30 no.2
    • /
    • pp.112-121
    • /
    • 1995
  • The physical properties of rubber compounds containing silica and siliane coupling agent in order to replace the carbon black and prepare for environmental regulation showed improved dynamic properties(rebound, heat build-up, $60^{\circ}C\;tan\;{\delta}$), but the abrasion resistance did not improve compared with the compounds containing carbon black. Also, curing retardation because of coherent structure of silica improved by the addition of DEG, but the mixing step change of activators did not so much improve the static and dynamic properties of the compounds containing high synthetic rubber, the status of mixing and dispersion showed that the compounds containing carbon black was much better than the compounds containing silica by TEM investigation.

  • PDF

Synthesis of Hollow Silica by Stöber Method with Double Polymers as Templates

  • Nguyen, Anh-Thu;Park, Chang Woo;Kim, Sang Hern
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.173-176
    • /
    • 2014
  • The hollow $SiO_2$ spheres with uniform size were synthesized by a modified Stober method under the control of polyelectrolytes (PSS and PAA) as templates. This synthetic route includes the formation of spherical colloid micelle in ethanol solution, hydrolysis of TEOS under control of ammonia, and the removal of polyelectrolyte by washing or calcination. Hollow silica spheres with controllable core diameters between 100 and 270 nm and wall thickness between 15 and 50 nm have been synthesized. The influence of template solution concentration and solvent and dispersant on the formation of silica hollow spheres is studied and reported in detail.

Preparation of Silica Nanoparticles via Two-Step Process Utilizing Mixed Chlorosilane Residues

  • Su, Yonghong;Xu, Bugang;Cai, Jixiang;Chen, Liang;Huang, Bing
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.562-569
    • /
    • 2018
  • We propose an economic and facile method for the preparation of silica nanoparticles through a two-step process utilizing chlorosilane residues. Mixed chlorosilane residue was alcoholized with absolute ethanol as a first step to form tetraethoxysilane (TEOS). The TEOS was then utilized as a silicon source to synthesize silica nanoparticles in a sol-gel method. The alcoholysis process was designed and optimized utilizing the Taguchi experimental design method and the yield of TEOS was as high as 82.2% under optimal synthetic conditions. Similarly, the Taguchi method was also utilized to study the effects of synthesis factors on the particle size of silica nanoparticles. The results of statistical analysis indicate that the concentration of ammonia has a greater influence on particle size compared to the mass fractions of TEOS and polyethylene glycol (4.6% and 9.7%). The purity of the silica particles synthesized in our experiments is high, but the specific surface area and pore volume are small.