• Title/Summary/Keyword: Synthetic images

Search Result 573, Processing Time 0.026 seconds

SHIP DETECTION APPROACH BASED ON CROSSCORRELATION FROM DUAL-POLARIZATION DATA (ASAR AP 다중편파 및 MULTI-LOOK 에 의한 선박탐지 연구)

  • Yang, Chan-Su;Ouchi, Kazuo
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.180-184
    • /
    • 2008
  • Preliminary results are reported on ship detection using coherence images computed from crosscorrelating images of multi-look-processed dual-polarization data (HH and HV) of ENVISAT ASAR. The traditional techniques of ship detection by radars such as CFAR (Constant False Alarm Rate) rely on the amplitude data, and therefore the detection tends to become difficult when the amplitudes of ships images are at similar level as the mean amplitude of surrounding sea clutter. The proposed method utilizes the property that the multi-look images of ships are correlated with each other. Because the inter-look images of sea surface are covered by uncorrelated speckle, crosscorrelation of multi-look images yields the different degrees of coherence between the images and water. The polarimetric information of ships, land and intertidal zone are first compared based on the cross-correlation between HH and HV. In the next step, we examine the technique when the dual-polarization data are split into two multi-look images.

  • PDF

Occlusion Restoration of Synthetic Stereomate for Remote Sensing Imagery

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, Ho-Wook;Ryu, Ki-Yun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.439-445
    • /
    • 2007
  • Stereoscopic viewing is an efficient technique for not only computer vision but also remote sensing applications. Generally, stereo pair obtained at the same time is necessary for 3D viewing, but it is possible to synthesize a stereomate suitable for stereo view with a single image and disparity-map. There have been researches concerning the generation of the synthetic stereomate from remote sensing imagery. However it is hard to find researches concerning the restoration of occlusion in stereomate. In this paper, we generated synthetic stereomates from remote sensing images, focused on the occlusion restoration. In order to figure out proper restoration methods depending on the spatial resolution of remote sensing imagery, we tested several methods including general interpolation and inpainting technique, then evaluated the results.

Performance Analysis of Deep Learning-Based Detection/Classification for SAR Ground Targets with the Synthetic Dataset (합성 데이터를 이용한 SAR 지상표적의 딥러닝 탐지/분류 성능분석)

  • Ji-Hoon Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2024
  • Based on the recently developed deep learning technology, many studies have been conducted on deep learning networks that simultaneously detect and classify targets of interest in synthetic aperture radar(SAR) images. Although numerous research results have been derived mainly with the open SAR ship datasets, there is a lack of work carried out on the deep learning network aimed at detecting and classifying SAR ground targets and trained with the synthetic dataset generated from electromagnetic scattering simulations. In this respect, this paper presents the deep learning network trained with the synthetic dataset and applies it to detecting and classifying real SAR ground targets. With experiment results, this paper also analyzes the network performance according to the composition ratio between the real measured data and the synthetic data involved in network training. Finally, the summary and limitations are discussed to give information on the future research direction.

A Study on Effective Identification of Targets Flying in Formation ISAR Images (ISAR 영상을 이용한 효과적인 편대비행 표적식별 연구)

  • Cha, Sang-Bin;Choi, In-Oh;Jung, Joo-Ho;Park, Sang-Hong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • Monostatic/Bistatic inverse synthetic aperture radar (ISAR) images are two-dimensional radar cross section (RCS) distributions of a target. When there are many targets in a single radar beam, ISAR images are generated with targets overlapped, so it is difficult to perform the targets identification using the trained database. In addition, it is inefficient to perform target identification using only single monostatic and bistatic ISAR images separately because each method has its own advantages and weaknesses. Therefore, this paper analyzes multiple targets identification performances using monostatic/bistatic ISAR images and proposes a method of identification through fusion of two ISAR images. To identify multiple targets, we use image combination technique using trained single target images. Simulation results show effectiveness of proposed method.

Detection of Edges in Color Images

  • Ganchimeg, Ganbold;Turbat, Renchin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.345-352
    • /
    • 2014
  • Edge detection considers the important technical details of digital image processing. Many edge detection operators already perform edge detection in digital color imaging. In this study, the edge of many real color images that represent the type of digital image was detected using a new operator in the least square approximation method, which is a type of numerical method. The Linear Fitting algorithm is computationally more expensive compared to the Canny, LoG, Sobel, Prewitt, HIS, Fuzzy, Parametric, Synthetic and Vector methods, and Robert' operators. The results showed that the new method can detect an edge in a digital color image with high efficiency compared to standard methods used for edge detection. In addition, the suggested operator is very useful for detecting the edge in a digital color image.

The Correcting Algorithm on Geometric Distortion of Polar Format Algorithm (PFA의 기하 왜곡 보정 기법)

  • Lee, Hankil;Kim, Donghwan;Son, Inhye
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Polar fomat algorithm (PFA) was derived from medical imaging theory, known as back projection, to process synthetic aperture radar(SAR) data. The difference between the operating condition of SAR and back projection assumption makes two distortions. First, the focusing performance of PFA is degraded in proportion to distances from the scene center. Second, the geometric accuracy in SAR images is distorted. Several methods were introduced to mitigate the distortions, but some disadvantages, such as the geometric discontinuity, are arisen when sub-images are combined. This paper proposes the novel method to compensate the geometric distortion with chirp Z-transform (CZT). This method corrects precisely the geometric errors without any problems, because a whole image can be processed all at once.

Improving Performance of Machine Learning-based Haze Removal Algorithms with Enhanced Training Database

  • Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.948-952
    • /
    • 2018
  • Haze removal is an object of scientific desire due to its various practical applications. Existing algorithms are founded upon histogram equalization, contrast maximization, or the growing trend of applying machine learning in image processing. Since machine learning-based algorithms solve problems based on the data, they usually perform better than those based on traditional image processing/computer vision techniques. However, to achieve such a high performance, one of the requisites is a large and reliable training database, which seems to be unattainable owing to the complexity of real hazy and haze-free images acquisition. As a result, researchers are currently using the synthetic database, obtained by introducing the synthetic haze drawn from the standard uniform distribution into the clear images. In this paper, we propose the enhanced equidistribution, improving upon our previous study on equidistribution, and use it to make a new database for training machine learning-based haze removal algorithms. A large number of experiments verify the effectiveness of our proposed methodology.

Eyeglass Remover Network based on a Synthetic Image Dataset

  • Kang, Shinjin;Hahn, Teasung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1486-1501
    • /
    • 2021
  • The removal of accessories from the face is one of the essential pre-processing stages in the field of face recognition. However, despite its importance, a robust solution has not yet been provided. This paper proposes a network and dataset construction methodology to remove only the glasses from facial images effectively. To obtain an image with the glasses removed from an image with glasses by the supervised learning method, a network that converts them and a set of paired data for training is required. To this end, we created a large number of synthetic images of glasses being worn using facial attribute transformation networks. We adopted the conditional GAN (cGAN) frameworks for training. The trained network converts the in-the-wild face image with glasses into an image without glasses and operates stably even in situations wherein the faces are of diverse races and ages and having different styles of glasses.

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

InSAR Studies of Alaska Volcanoes

  • Lu Zhong;Wicks Chuck;Dzurisin Dan;Power John
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.59-72
    • /
    • 2005
  • Interferometric synthetic aperture radar (InSAR) is a remote sensing technique capable of measuring ground surface deformation with sub-centimeter precision and spatial resolution in tens-of­meters over a large region. This paper describes basics of InSAR and highlights our studies of Alaskan volcanoes with InSAR images acquired from European ERS-l and ERS-2, Canadian Radarsat-l, and Japanese JERS-l satellites.