• Title/Summary/Keyword: Synthetic estimation

Search Result 268, Processing Time 0.055 seconds

Detecting location of reinforcing bars in concrete using synthetic aperture radar method (합성개구 레이더법에 의한 콘크리트 내 철근위치 산정)

  • Park, Seok-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.602-605
    • /
    • 2006
  • Locating reinforcing bars, in particular to know their accurate depths and horizontal distances, is very important in radar inspection of concrete structures. By the way, it is not easy for an accurate depth and horizontal distance estimation of reinforcing bars in concrete structures by the radar test. This problem can be solved by synthetic aperture radar method. To improve the vertical and horizontal resolution of reinforcing bars in concrete, synthetic aperture radar method was examined in this study.

  • PDF

ON COMPARISON OF PERFORMANCES OF SYNTHETIC AND NON-SYNTHETIC GENERALIZED REGRESSION ESTIMATIONS FOR ESTIMATING LOCALIZED ELEMENTS

  • SARA AMITAVA
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.1
    • /
    • pp.73-83
    • /
    • 2005
  • Thompson's (1990) adaptive cluster sampling is a promising sampling technique to ensure effective representation of rare or localized population units in the sample. We consider the problem of simultaneous estimation of the numbers of earners through a number of rural unorganized industries of which some are concentrated in specific geographic locations and demonstrate how the performance of a conventional Rao-Hartley-Cochran (RHC, 1962) estimator can be improved upon by using auxiliary information in the form of generalized regression (greg) estimators and then how further improvements are also possible to achieve by adopting adaptive cluster sampling.

The ensemble approach in comparison with the diverse feature selection techniques for estimating NPPs parameters using the different learning algorithms of the feed-forward neural network

  • Moshkbar-Bakhshayesh, Khalil
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3944-3951
    • /
    • 2021
  • Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in presence of large number of FS techniques, are very tedious and time consuming task. In this study to tackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology based on the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neural network (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, the F-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniques of the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean) are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined as the case study. The results show that the Min combination technique gives the more accurate estimation. Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the heterogeneous ensemble, the search space for acceptable estimation of the target parameters may be reduced from n × m to n × 1. The proposed methodology gives a simple and practical approach for more reliable and more accurate estimation of the target parameters compared to the methods such as the use of synthetic dataset or trial and error methods.

SINGLE PANORAMA DEPTH ESTIMATION USING DOMAIN ADAPTATION (도메인 적응을 이용한 단일 파노라마 깊이 추정)

  • Lee, Jonghyeop;Son, Hyeongseok;Lee, Junyong;Yoon, Haeun;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.61-68
    • /
    • 2020
  • In this paper, we propose a deep learning framework for predicting a depth map of a 360° panorama image. Previous works use synthetic 360° panorama datasets to train networks due to the lack of realistic datasets. However, the synthetic nature of the datasets induces features extracted by the networks to differ from those of real 360° panorama images, which inevitably leads previous methods to fail in depth prediction of real 360° panorama images. To address this gap, we use domain adaptation to learn features shared by real and synthetic panorama images. Experimental results show that our approach can greatly improve the accuracy of depth estimation on real panorama images while achieving the state-of-the-art performance on synthetic images.

Synchronizationof Synthetic Facial Image Sequences and Synthetic Speech for Virtual Reality (가상현실을 위한 합성얼굴 동영상과 합성음성의 동기구현)

  • 최장석;이기영
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.95-102
    • /
    • 1998
  • This paper proposes a synchronization method of synthetic facial iamge sequences and synthetic speech. The LP-PSOLA synthesizes the speech for each demi-syllable. We provide the 3,040 demi-syllables for unlimited synthesis of the Korean speech. For synthesis of the Facial image sequences, the paper defines the total 11 fundermental patterns for the lip shapes of the Korean consonants and vowels. The fundermental lip shapes allow us to pronounce all Korean sentences. Image synthesis method assigns the fundermental lip shapes to the key frames according to the initial, the middle and the final sound of each syllable in korean input text. The method interpolates the naturally changing lip shapes in inbetween frames. The number of the inbetween frames is estimated from the duration time of each syllable of the synthetic speech. The estimation accomplishes synchronization of the facial image sequences and speech. In speech synthesis, disk memory is required to store 3,040 demi-syllable. In synthesis of the facial image sequences, however, the disk memory is required to store only one image, because all frames are synthesized from the neutral face. Above method realizes synchronization of system which can real the Korean sentences with the synthetic speech and the synthetic facial iage sequences.

  • PDF

Analysis of High Resolution Range Estimation for Moving Target Using Stepped Frequency Radar with Coherent Pulse Train (코히어런트 펄스열을 갖는 계단 주파수 레이더를 이용한 이동표적의 고해상도 거리 추정 분석)

  • Sim, Jae-Hun;Bae, Keun-Sung
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.599-604
    • /
    • 2018
  • A Stepped Frequency Radar(SFR) is a method that realizes high resolution range estimation by increasing the frequency of transmission pulses at regular intervals to generate a wide synthetic bandwidth. However, in the case of a moving target, accurate range estimation becomes difficult due to the range-Doppler coupling. In this paper, the process of high resolution range estimation by compensation of the range-Doppler coupling with estimated velocity of the moving target using the SFR waveform with Coherent Pulse Train(CPT) is analyzed and it was verified through simulation.

A STUDY ON THE PARAMETER ESTIMATION OF SNYDER-TYPE SYNTHETIC UNIT-HYDROGRAPH DEVELOPMENT IN KUM RIVER BASIN

  • Jeong, Sang-man;Park, Seok-Chae;Lee, Joo-Heon
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.219-229
    • /
    • 2001
  • Synthetic unit hydrograph equations for rainfall run-off characteristics analysis and estimation of design flood have long and quite frequently been presented, the Snyder and SCS synthetic unit hydrograph. The major inputs to the Snyder and SCS synthetic unit hydrograph are lag time and peak coefficient. In this study, the methods for estimating lag time and peak coefficient for small watersheds proposed by Zhao and McEnroe(1999) were applied to the Kum river basin in Korea. We investigated lag times of relatively small watersheds in the Kum river basin in Korea. For this investigation the recent rainfall and stream flow data for 10 relatively small watersheds with drainage areas ranging from 134 to 902 square kilometers were gathered and used. 250 flood flow events were identified along the way, and the lag time for the flood events was determined by using the rainfall and stream flow data. Lag time is closely related with the basin characteristics of a given drainage area such as channel length, channel slope, and drainage area. A regression analysis was conducted to relate lag time to the watershed characteristics. The resulting regression model is as shown below: ※ see full text (equations) In the model, Tlag is the lag time in hours, Lc is the length of the main river in kilometers and Se is the equivalent channel slope of the main channel. The coefficient of determinations (r$^2$)expressed in the regression equation is 0.846. The peak coefficient is not correlated significantly with any of the watershed characteristics. We recommend a peak coefficient of 0.60 as input to the Snyder unit-hydrograph model for the ungauged Kum river watersheds

  • PDF

Digital Image Stabilization Using Simple Estimation of Rotational and Translational Motion (회전 및 병진운동 추정을 통한 디지털 영상안정화)

  • Seok, Ho-Dong;Kang, Kil-Soon;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.46-48
    • /
    • 2004
  • This paper presents a simple method of rotational and translational motion estimation for digital image stabilization. The scheme first computes the rotation center by taking least squares of selected local velocity vectors, and the rotational angle is found from special subset of motion vectors. And then translational motion can be estimated by the relation among movement of rotation center, rotation angle and translation movement. To show the effectiveness of our approach, the synthetic images are evaluated, resulting in better performance.

  • PDF

Optimum MVF Estimation-Based Two-Band Excitation for HMM-Based Speech Synthesis

  • Han, Seung-Ho;Jeong, Sang-Bae;Hahn, Min-Soo
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.457-459
    • /
    • 2009
  • The optimum maximum voiced frequency (MVF) estimation-based two-band excitation for hidden Markov model-based speech synthesis is presented. An analysis-by-synthesis scheme is adopted for the MVF estimation which leads to the minimum spectral distortion of synthesized speech. Experimental results show that the proposed method significantly improves synthetic speech quality.

An Experimental Study on Synthetic Aperture Sonar under Korean Littoral Environment (한국 근해에서의 실측 데이터를 이용한 합성 어퍼쳐 소나 실험에 관한 연구)

  • 박희영;도경철;강현우
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.428-436
    • /
    • 2004
  • Synthetic Aperture Sonar is a technique of extending Physically limited length of an array by signal processing to enhance bearing resolution of a system. The previous techniques estimate most or away shapes as linear. so when towed array shapes are distorted. this can create a deviation from actual situation. In this paper. we estimated perturbed away shapes. and compensated distortion by using estimated array shapes and synthesized arrays in aperture domain. As experimental data, we used the one obtained from towed array in neighboring waters of the Korean peninsula. We extended array by compensating differences in time and spatial position between overlapped subarrays by using SAS techniques. In simulation results. we confirmed that the bearing resolution was enhanced.