• Title/Summary/Keyword: Synthetic division

Search Result 643, Processing Time 0.03 seconds

A Study on the Radioprotective Effects of Foods -Focusing on the Glycobiological Properties of Mushrooms- (식품류를 이용한 방사선 방호 효과 -버섯류의 당 생물학적인 특징중심으로-)

  • Kim, Jong-Soo;Ahn, Byeong-Kwon;Choi, Hyun-Suk;Choi, Du-Bok;Yeom, Jung-Min;Kim, Soong-Pyung;Lee, In-Sung;Cho, Mi-Ja;Cha, Wol-Suk
    • KSBB Journal
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • Radiation causes various pathophysiological alterations in living animals, and it causes death at high doses by multiple mechanisms, including direct DNA damage and indirect oxidative stress. The search for useful radioprotectors has been an important issue in the field of radiation biology. Ideal radioprotectors should have low toxicity and an extended window of protection. As many synthetic compounds have toxic side effects, the natural products have attracted scientific attention as radioprotectors. Natural products that have been recently shown to be effective with various biological activities were found to have radioprotective effect. The aim of this review is to summary the recent research of the radioprotective effects of natural foods, especially focused on the glycobiological properties of mushrooms.

Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway

  • Choi, Sujeong;Kwon, Hyon-Jo;Song, Hee-Jung;Choi, Si Wan;Nagar, Harsha;Piao, Shuyu;Jung, Saet-byel;Jeon, Byeong Hwa;Kim, Dong Woon;Kim, Cuk-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.539-545
    • /
    • 2016
  • Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function.

Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme (Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정)

  • Kim, Sangwoo;Lee, Taehwa;Chun, Beomseok;Jung, Younghun;Jang, Won Seok;Sur, Chanyang;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.11-20
    • /
    • 2020
  • We estimated the spatio-temporally distributed soil moisture using Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images and soil moisture data assimilation technique in South Korea. Soil moisture data assimilation technique can extract the hydraulic parameters of soils using observed soil moisture and GA (Genetic Algorithm). The SWAP (Soil Water Atmosphere Plant) model associated with a soil moisture assimilation technique simulates the soil moisture using the soil hydraulic parameters and meteorological data as input data. The soil moisture based on Sentinel-1A/B was validated and evaluated using the pearson correlation and RMSE (Root Mean Square Error) analysis between estimated soil moisture and TDR soil moisture. The soil moisture data assimilation technique derived the soil hydraulic parameters using Sentinel-1A/B based soil moisture images, ASOS (Automated Synoptic Observing System) weather data and TRMM (Tropical Rainfall Measuring Mission)/GPM (Global Precipitation Measurement) rainfall data. The derived soil hydrological parameters as the input data to SWAP were used to simulate the daily soil moisture values at the spatial domain from 2001 to 2018 using the TRMM/GPM satellite rainfall data. Overall, the simulated soil moisture estimates matched well with the TDR measurements and Sentinel-1A/B based soil moisture under various land surface conditions (bare soil, crop, forest, and urban).

Isoindigo Based Small Molecules for High-Performance Solution-Processed Organic Photovoltaic Devices

  • Elsawy, W.;Lee, C.L.;Cho, S.;Oh, S.H.;Moon, S.H.;Elbarbary, A.;Lee, Jae-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.245.2-245.2
    • /
    • 2013
  • Solution processed organic photovoltaic devices have relatively less attention compared to polymer photovoltaic devices even though they have high possibility to be developed because they have both advantages of polymer and organic, such as solution processable, no synthetic batch dependence of photovoltaic performance, high purity and high charge carrier mobility as well as relatively high efficiency (~7%). In addition, solution processed organic photovoltaic devices have an advantage of easiness to study the relationship between the molecular structure and photovoltaic performance due to its simple structure. In this work, five isoindigo based low band gap donor-acceptor-donor (D-A-D) small molecules with different electron donating strength were synthesized for investigating the relationship between the molecular structure and photovoltaic performance, especially, investigating the effects of different electron donating effect of donor group in isoindigo backbone to photovoltaic device performance. The variation of electron donating strength of donor group strongly affected the optical, thermal, electrochemical and photovoltaic device performances of isoindigo organic materials. The highest power conversion efficiency of ~3.2% was realized in bulk heterojuction photovoltaic device consisted of the ID3T as donor and PC70BM as acceptor. This work demonstrates the great potential of isoindigo moieties as electron deficient units as well as guideline for synthesis of donor-acceptor-donor (D-A-D) small molecules for realizing highly efficient solution processed organic photovoltaic devices.

  • PDF

Extraction of Ground Control Points from TerraSAR-X Data (TerraSAR-X를 이용한 지상기준점 추출)

  • Park, Jeong-Won;Hong, Sang-Hoon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.299-307
    • /
    • 2008
  • It is possible to extract qualified ground control points (GCPs) from SAR data itself without published maps. TerraSAR-X data that are one of highest spatial resolution among civilian SAR systems is now available. In this study, a sophisticated method for GCP extraction from TerraSAR-X data was tested and the quality of the extracted GCPs was evaluated. Mean values of the distance errors were 0.11m and -3.96 m with standard deviations of 6.52 m and 5.11 m in easting and northing, respectively. The result is one of the best among GCPs possibly extracted from any civilian remote sensing systems. The extracted GCPs were used for geo-rectification of IKONOS image. The method used in this study can be applied to KOMPSAT-5 for geo-rectification of high-resolution optic images acquired by KOMPSAT-2 or follow-up missions.

Development of Cosmetics Preservatives using Natural Essential Oil (천연유래 에센셜 오일을 활용한 화장품 방부제 개발)

  • Kim, Bo-Ae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.445-450
    • /
    • 2019
  • Recently, consumers using cosmetics have a great interest in raw material safety. Among them, interest in natural preservatives is increasing, and as the demand for cosmetics excluding paraben preservatives increases, a method of replacing synthetic preservatives with antibacterial essential oils is being considered. The antibacterial effect of essential oils depends on the components, concentrations and interactions between the main active compounds. Effective preservatives should have antimicrobial activity against a wide range of strains even at minimal concentrations. All preservatives should be considered to increase skin concentration and cause skin irritation and allergic reactions. Consumers recognize that essential oils from nature are safe, but some should be careful because they can cause contact allergies or phototoxic reactions. As such, it is important to balance natural preservatives with maximum preservative effects and low toxicity. This paper describes the characteristics of essential oils focused on antibacterial properties, efficacy and safety as cosmetic preservatives.

Anti-inflammatory effect of Distylium racemosum leaf biorenovate extract in LPS-stimulated RAW 264.7 macrophages cells (LPS로 유도된 RAW 264.7 세포에 대한 조록나무 잎 Biorenovation 추출물의 항염증 활성)

  • Hong, Hyehyun;Lee, Kyung-Mi;Park, Taejin;Chi, Won-Jae;Kim, Seung-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.375-382
    • /
    • 2021
  • Biorenovation is a microbial enzyme-based structural modification of component compounds in natural products and synthetic compounds including plant extracts with the potential benefits of improved biological activities compared with its reaction substrates. In this study, we investigated the anti-inflammatory activity of Distylium racemosum leaf extract and D. racemosum leaf biorenovation extract (DLB). As a result, DLB inhibited nitric oxide, prostaglandin E2, and inflammatory cytokines including tumor necrosis factor-α, interleukin-6, interleukin-1β at non-toxic concentrations. In addition, DLB significantly inhibited inducible nitric oxide synthase and cyclooxygenase-2 on LPS-treated RAW 264.7 macrophages. Based on these results, we suggest that the DLB could be used as a potent anti-inflammatory agents. It also suggests that the application of biological evolution has potential usefulness to increase the practical value of natural products.

A Study on Wastewater Treatment by Electrochemical Treatment with Various Electrode Interval (전극 간격에 따른 전기화학적 처리를 통한 폐수처리에 관한 연구)

  • Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.417-423
    • /
    • 2019
  • A new wastewater treatment system was developed to remove nitrate nitrogen and phosphorus in synthetic wastewater through electrochemical treatment. Higher removal efficiencies of nitrate nitrogen were obtained as the current density increased. Higher nitrate removal efficiencies were obtained when the switching interval was 1 min. The total phosphorus removal rate according to the current density was found to be over 90% without being greatly affected by the change in current density and interval, and the total removal rate increased with increasing switching time (1 min interval). On the other hand, COD was not treated by electrochemical treatment, but rather increased as the electrode eluted. Also, the consumption rate of the electrode was smaller as the switching interval was shorter. Finally, removal efficiencies of 98.1% of nitrate and 90% of phosphorus were obtained through electrochemical treatment (current density $50mA/cm^2$, switching interval 1 min, flow rate 540 mL/min).

Removal of Nutrients and Heavy Metals from Swine Wastewater using Chlorella vulgaris (Chlorella vulgaris를 이용한 양돈폐수 내 영양염류 및 중금속 제거)

  • Oh, Eun-Ji;Hwang, In-Sung;Yoo, Jin;Chung, Keun-Yook
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1059-1072
    • /
    • 2018
  • Bioremediation has been recognized as a suitable alternative to conventional methods of removing contaminants, and it uses fungi, bacteria and microalgae. In contrast to other organisms, microalgae are unique in that they have the ability to perform photosynthesis like plants and to utilize organic/inorganic carbon substrates, in a process called phytoremediation. Microalgae can populate a reaction site rapidly and enhance the bioremediation efficiency. In this study, Chlorella vulgaris was used to evaluate the removal potentials of the nutrients (N and P) and heavy metals (Cu and Zn) from swine wastewater. The optimum growth conditions for Chlorella vulgaris and the removal potentials of N, P, Cu, and Zn from synthetic wastewater using Chlorella vulgaris were investigated. Based on the results, the applicability of this microalga to on-site wastewater treatment was examined. Optimal growth conditions for Chlorella vulgaris were established to be $28^{\circ}C$, a pH of 7, and light and dark cycles of 14:10 h. As the concentrations of the nutrients were increased, the efficiencies of N and P removal efficiencies by Chlorella vulgaris were decreased in the single and binary mixed treatments of the nutrients, respectively. Further, the efficiencies of Cu and Zn removal also decreased as the heavy metals concentrations added were increased, both in the single and binary mixed treatments. In addition, the efficiency of Cu removal was higher than that of Zn removal. Our results indicate that Chlorella vulgaris could be used in treatment plants for the removal of nutrients and heavy metals from swine wastewater.

Inhibition of lipid and protein oxidation in raw ground pork by Terminalia arjuna fruit extract during refrigerated storage

  • Chauhan, Pranav;Pradhan, Soubhagya Ranjan;Das, Annada;Nanda, Pramod Kumar;Bandyopadhyay, Samiran;Das, Arun K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.265-273
    • /
    • 2019
  • Objective: Terminalia arjuna plant, specially its leaves, bark, and roots, are widely used in traditional herbal medicine due to presence of bioactive components and being a rich source of natural antioxidants. But its fruit has not been used for any such purposes despite its potential to retard oxidation. Hence, the antioxidant potential of Arjuna fruit extract (AFE) in retarding lipid and protein oxidation of raw ground pork was evaluated during refrigerated storage for 9 days. Methods: The AFEs were prepared using different solvents viz. ethanol (EH), water, ethanol: water (60:40) and methanol:hot water (60:40). The AFEs were analysed for total phenolic content (TPC), 2, 2-diphenyl-1-picrylhydrazyl radical scavenging activity and reducing power. Water extract (WE) and ethanol-water extract (EH-WE) were selected and incorporated at 1.0% into freshly minced pork meat and compared with a synthetic antioxidant, in retarding lipid and protein oxidation during storage. Results: The TPC in AFEs using different solvents ranged from 11.04 to 16.53 mg gallic acid equivalents/g and extracts exhibited appreciable scavenging activity ranging from 50.02% to 58.62%. Arjuna extracts significantly (p<0.05) improved the colour score of meat samples by reducing the formation of metmyoglobin during storage. Both the AFEs (WE and EH-WE) significantly (p<0.05) lowered the thiobarbituric acid reactive substances value, peroxide formation and formation of protein carbonyls in raw pork than control sample during storage. Upon sensory evaluation of all samples, it was found that AFE treatment could prolong the storage period of meat samples, without influencing the colour and odour score, up to 6 days. Conclusion: AFEs used at 1% improved the oxidative stability, colour and odour score and prolonged the refrigerated shelf life of ground pork up 6 days. Therefore, AFE could be explored as an alternative natural antioxidant in retarding lipid and protein oxidation in meat products.