• Title/Summary/Keyword: Synthesized powder materials

Search Result 786, Processing Time 0.027 seconds

Synthesis of Nano Sized Cobalt Powder from Cobalt Sulfate Heptahydrate by Liquid Phase Reduction (액상환원공정을 이용한 황산코발트로부터의 코발트 나노분말 합성)

  • An, Se-Hwan;Kim, Se-Hoon;Lee, Jin-Ho;Hong, Hyun-Seon;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.327-333
    • /
    • 2011
  • Nanostructured cobalt materials have recently attracted considerable attention due to their potential applications in high-density data storage, magnetic separation and heterogeneous catalysts. The size as well as the morphology at the nano scale strongly influences the physical and chemical properties of cobalt nano materials. In this study, cobalt nano particles synthesized by a a polyol process, which is a liquid-phase reduction method, were investigated. Cobalt hydroxide ($Co(OH)_2$), as an intermediate reaction product, was synthesized by the reaction between cobalt sulphate heptahydrate ($CoSO_4{\cdot}7H_2O$) used as a precursor and sodium hydroxide (NaOH) dissolved in DI water. As-synthesized $Co(OH)_2$ was washed and filtered several times with DI water, because intermediate reaction products had not only $Co(OH)_2$ but also sodium sulphate ($Na_2SO_4$), as an impurity. Then the cobalt powder was synthesized by diethylene glycol (DEG), as a reduction agent, with various temperatures and times. Polyvinylpyrrolidone (PVP), as a capping agent, was also added to control agglomeration and dispersion of the cobalt nano particles. The optimized synthesis condition was achieved at $220^{\circ}C$ for 4 hours with 0.6 of the PVP/$Co(OH)_2$ molar ratio. Consequently, it was confirmed that the synthesized nano sized cobalt particles had a face centered cubic (fcc) structure and with a size range of 100-200 nm.

Pressureless Sintering and Microstructure of Pure Tungsten Powders Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 제조한 텅스텐 분말의 상압소결과 미세조직)

  • Heo, Youn Ji;Lee, Eui Seon;Oh, Sung-Tag;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.247-251
    • /
    • 2022
  • This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.

Characteristics of Spodumene Powders Synthesized by Polyvinyl Alcohol Solution Technique (Polyvinyl Alcohol 폴리머 용액법으로 합성한 스포듀민 분말의 특성연구)

  • Lee, Sang-Jin;Park, Ji-Eun
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • LAS-system ceramic powder, spodumene ($Li_2O{\cdot}Al_2O_3{\cdot}4SiO_2$), was successfully synthesized by a chemical solution technique employing PVA(polyvinyl alcohol) as an organic carrier. The PVA content affected the microstructure of porous precursor gels and the crystalline development. The optimum PVA content contributed to homogeneous distribution of metal ions in the precursor gel and it resulted in the synthesis of glass free $\beta$-spodumene powder having a specific surface area of $7.57\;m^2/g$. The agglomerated $\beta$-spodumene powders were also enough soft to grind to fine powders by a simple ball milling process. The microstructures of the densified powder compacts were strongly dependant on the minor phases of spodumene solid solution and amount of liquid phase, which were formed from the inhomogeneous precursors.

Purification of Multi Walled Carbon Nanotubes (Mwcnts) Synthesized by Arc Discharge Set Up

  • Malathi, Y.;Padya, Balaji;Prabhakar, K.V.P.;Jain, P.K.
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • Carbon nanotubes are unique tubular structures of nanometer diameter and large length/diameter ratio. The nanotubes may consist of one up to tens and hundreds of concentric shells of carbons with adjacent shells separation of ~0.34 nm. Multiwalled carbon nanotubes were synthesized by arc-discharge technique. MWCNTs were formed at the cathode deposit along with other carbonaceous materials like amorphous carbon, graphite etc. However, to get the best advantage of carbon nanotubes in various advanced applications, these undesired carbonaceous materials to be removed which is a challenging task. In the present study, various techniques were tried out for purifying MWCNTs such as physical filtration, chemical treatment and thermal annealing. SEM, FTIR, TGA and BET techniques were used to characterize the CNTs at various stages. Results shows that suitable chemical treatment followed by thermal annealing under controlled flow of oxygen gives the better route for purification of carbon nanotubes.

Synthesis of Bi-Sb-Te Thermoelectric Nanopowder by the Plasma Arc Discharge Process (플라즈마 아크 방전법에 의한 Bi-Sb-Te 나노 열전분말 제조)

  • Lee, Gil-Geun;Lee, Dong-Youl;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.352-358
    • /
    • 2008
  • The present study focused on the synthesis of a bismuth-antimony-tellurium-based thermoelectric nanopowders using plasma arc discharge process. The chemical composition, phase structure, particle size of the synthesized powders under various synthesis conditions were analyzed using XRF, XRD and SEM. The powders as synthesized were sintered by the plasma activated sintering. The thermoelectric properties of sintered body were analyzed by measuring Seebeck coefficient, specific electric resistivity and thermal conductivity. The chemical composition of the synthesized Bi-Sb-Te-based powders approached that of the raw material with an increasing DC current of the are plasma. The synthesized Bi-Sb-Te-based powder consist of a mixed phase structure of the $Bi_{0.5}Sb_{1.5}Te_{3}$, $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ phases. This powder has homogeneous mixing state of two different particles in an average particle size; about 100nm and about 500nm. The figure of merit of the sintered body of the synthesized 18.75 wt.%Bi-24.68 wt.%Sb-56.57 wt.%Te nanopowder showed higher value than one of the sintered body of the mechanically milled 12.64 wt.%Bi-29.47 wt.%Sb-57.89 wt.%Te powder.

Nanocrystalline and Ultrafine Grained Materials by Mechanical Alloying

  • Wang, Erde;Hu, Lianxi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.829-830
    • /
    • 2006
  • Recent research at Harbin Institute of Technology on the synthesis of nanocrystalline and untrafine grained materials by mechanical alloying/milling is reviewed. Examples of the materials include aluminum alloy, copper alloy, magnesium-based hydrogen storage material, and $Nd_2Fe_{14}B/{\alpha}-Fe$ magnetic nanocomposite. Details of the processes of mechanical alloying and consolidation of the mechanically alloyed nanocrystalline powder materials are presented. The microstructure characteristics and properties of the synthesized materials are addressed.

  • PDF

Synthesis and Properties of Mullite from Kaolin by Boehmite Gel Coating (Boehmite Gel Coating법에 의한 Kaolin으로부터 Mullite의 합성 및 그 특성)

  • 임병수;김인섭
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 1997
  • In order to apply synthesis technique of the high purity ceramic powder to the traditional ceramic powder, mullite powder which is widly used for refractory materials was synthesized. Boehmite and Hadong kaolin with high alumina content were used as starting materials and gel coating method was tried to produce the mullite powder. As a result, the mullite powder of high quality was successfully obtained at 1350℃. The unreacted silica and cornudum were not observed in the synthesized mullite powder, mullite content was more than 80% when the starting materials were sintered at 1700℃. Their properties showed bulk specific gravity of 2.56, water absorption of 1.9%, and 3-point flexual strength of 169 MPa. It is thought that that their good properties are applicable to refractory materials of high quality.

  • PDF

Fabrication and Characterization of Thermoelectric Thick Film by Using Bi-Te-Sb Powders

  • Yu, Ji-Hun;Bae, Seung-Chul;Ha, Gook-Hyun;Kim, Ook-Jung;Lee, Gil-Gun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.430-431
    • /
    • 2006
  • Thermoelectric thick film was fabricated by screen printing process with using p-type Bi-Te-Sb powders. The powder was synthesized by melting, milling and sintering process and hydrogen reduced to enhance the thermoelectric property. The thick film of Bi-Te-Sb powder was fabricated by screen printing method and baked at the optimized conditions. The thermal conductivity, the electrical resistivity and Seeback coefficient of thick film were measured and the thermoelectric performance was analyzed in terms of film characteristics and its microstructure. Finally, the feasibility of thermoelectric thick film into micro cooling device on CPU chip was discussed in this study.

  • PDF

Preparation of $(La, Sr)MnO_3$ Powder by Glycine-Nitrate Process Using Oxide as Starting Materials (Glycine-Nitrate Process를 이용한 산화물 출발물질로부터 $(La, Sr)MnO_3$ 분말의 제조)

  • 김재동;문지웅;김구대;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1003-1008
    • /
    • 1997
  • The (La, Sr)MnO3 powder used as air-electrode material of Solid Oxide Cell (SOFC) was synthesized by Modified-GNP(Modified-Glycine Nitrate Process). The powders were prepared using oxide and carbonate stable in atmosphere and nitric acid was used as a solvent of starting material as well as an oxidant for combustion. The (La, Sr)MnO3 powders were synthesized with 0.5, 1, 2, 3, 4 of glycine/cation molar ratio. The ICP (Inductively Coupled Plasma Mass Spectrometer) result represented compositional equality between synthesized and desired powders. In case of 2 molar ratio, the as-synthesized powder showed perovskite phase and specific surface area were 19 $m^2$/g. After calcination of 85$0^{\circ}C$, the calcined powder except 0.5, 1 molar ratio of glycine to cation showed perovskite phase.

  • PDF

Synthesis of Nanostructured TiC/Co Composite Powder by the Spray Thermal Conversion Process

  • Lee, Gil-Geun;Ha, Gook-Hyun;Kim, Byoung-Kee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.418-419
    • /
    • 2006
  • In the present, the focus is on the synthesis of nanostructured TiC/Co composite powder by the spray thermal conversion process using titanium dioxide powder has an average particle size of 50 nm and cobalt nitrate as raw materials. The titanium-cobalt-oxygen based oxide powder prepared by the combination of the spray drying and desalting methods. The titanium-cobalt-oxygen based oxide powder carbothermally reduced by the solid carbon. The synthesized TiC-15wt.%Co composite powder at 1473K for 2 hours had an average particle size of 150 nm.

  • PDF