• Title/Summary/Keyword: Synthesis optimization

Search Result 408, Processing Time 0.027 seconds

Control System Synthesis Using BMI: Control Synthesis Applications

  • Chung, Tae-Jin;Oh, Hak-Joon;Chung, Chan-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.184-193
    • /
    • 2003
  • Biaffine Matrix Inequality (BMI) is known to provide the most general framework in control synthesis, but problems involving BMI's are very difficult to solve because nonconvex optimization should be solved. In the previous paper, we proposed a new solver for problems involving BMI's using Evolutionary Algorithms (EA). In this paper, we solve several control synthesis examples such as Reduced-order control, Simultaneous stabilization, Multi-objective control, $H_{\infty}$ optimal control, Maxed $H_2$ / $H_{\infty}$control design, and Robust $H_{\infty}$ control. Each of these problems is formulated as the standard BMI form, and solved by the proposed algorithm. The performance in each case is compared with those of conventional methods.

A Study on the area minimization using general floorplan (종합평면을 사용한 면적 최적화에 관한 연구)

  • 이용희;정상범이천희
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1021-1024
    • /
    • 1998
  • Computer-aided design of VLSI circuits is usually carried out in three synthesis steps; high-level synthesis, logic synthesis and layout synthesis. Each synthesis step is further kroken into a few optimization problems. In this paper we study the area minimization problem in floorplanning(also known as the floorplan sizing problem). We propose the area minimization algorithms for general floorplans.

  • PDF

Optimization of MOF-801 Synthesis Using Sequential Design of Experiments (순차적 실험계획법을 이용한 MOF-801 합성공정 최적화)

  • Lee, Min Hyung;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.621-626
    • /
    • 2021
  • A sequential design of experiments was used to optimize MOF-801 synthesis process. For the initial screening, a general 2k factorial design was selected followed by the central composition design, one of the response surface methods. A 23 factorial design based on the molar ratio of fumaric acid, dimethylformamide (DMF), and formic acid was performed to select the more suitable response variable for the design of experimental method among the crystallinity and BET specific surface area of MOF-801. After performing 8 synthesis experiments designed by MINITAB 19 software, the characteristic analysis was performed using XRD analysis and nitrogen adsorption method. The crystallinity with R2 = 0.999 was found to be more suitable for the experimental method than that of BET specific surface area. Based on analysis of variance (ANOVA), it was confirmed that the molar ratio of fumaric acid and formic acid was a major factor in determining the crystallinity of MOF-801. Through the response optimization and contour plot of two factors, the optimal molar ratio of ZrOCl2·8H2O : fumaric acid : DMF : formic acid was 1 : 1 : 39 : 35. In order to optimize the synthesis process, the central composition design on synthesis time and temperature was performed under the identical molar ratio of precursors. The results derived through the designed 9 synthesis experiments were calculated using the quadratic model equation. Thus, the maximum crystallinity of MOF-801 predicted under the synthesis time and temperature of 7.8 h and 123 ℃, respectively.

Design of Fanin-Constrained Multi-Level Logic Optimization System (Fanin 제약하의 다단 논리 최적화 시스템의 설계)

  • 임춘성;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.64-73
    • /
    • 1992
  • This paper presents the design of multi-level logic optimization algorithm and the development of the SMILE system based on the algorithm. Considering the fanin constraints in algorithmic level, SMILE performs global and local optimization in a predefined sequence using heuristic information. Designed under the Sogang Silicon Compiler design environment, SMILE takes the SLIF netlist or Berkeley equation formats obtained from high-level synthesis process, and generates the optimized circuits in the same format. Experimental results show that SMILE produces the promising results for some circuits from MCNC benchmarks, comparable to the popularly used multi-level logic optimization system, MIS.

  • PDF

Efficient Design Methodology based on Hybrid Logic Synthesis for SoC (효율적인 SoC 논리합성을 위한 혼합방식의 설계 방법론)

  • Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.571-578
    • /
    • 2012
  • In this paper, we propose two main points. The first is the constraint for logic synthesis, and the second is an efficient logic synthesis method. Logic synthesis is a process to obtain the gate-level netlist from RTL (register transfer level) codes using logic mapping and optimization with the specified constraints. The result of logic synthesis is tightly dependent on constraint and logic synthesis method. Since the size and timing can be dramatically changed by these, we should precisely consider them. In this paper, we present the considering items in the process of logic synthesis by using our experience and experimental results. The proposed techniques was applied to a circuit with the hardware resource of about 650K gates. The synthesis time for the hybrid method was reduced by 47% comparing the bottom-up method and It has better timing property about slack than top-down method.

On-line Motion Synthesis Using Analytically Differentiable System Dynamics (분석적으로 미분 가능한 시스템 동역학을 이용한 온라인 동작 합성 기법)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.133-142
    • /
    • 2019
  • In physics-based character animation, trajectory optimization has been widely adopted for automatic motion synthesis, through the prediction of an optimal sequence of future states of the character based on its system dynamics model. In general, the system dynamics model is neither in a closed form nor differentiable when it handles the contact dynamics between a character and the environment with rigid body collisions. Employing smoothed contact dynamics, researchers have suggested efficient trajectory optimization techniques based on numerical differentiation of the resulting system dynamics. However, the numerical derivative of the system dynamics model could be inaccurate unlike its analytical counterpart, which may affect the stability of trajectory optimization. In this paper, we propose a novel method to derive the closed-form derivative for the system dynamics by properly approximating the contact model. Based on the resulting derivatives of the system dynamics model, we also present a model predictive control (MPC)-based motion synthesis framework to robustly control the motion of a biped character according to on-line user input without any example motion data.

Automatic Synthesis of Chemical Processes by a State Space Approach (상태공간 접근법에 의한 화학공정의 자동합성)

  • 최수형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.832-835
    • /
    • 2003
  • The objective of this study is to investigate the possibility of chemical process synthesis purely based on mathematical programming when given an objective, feed conditions, product specifications, and model equations for available process units. A method based on a state space approach is proposed, and applied to an example problem with a reactor, a heat exchanger, and a separator. The results indicate that a computer can automatically synthesize an optimal process without any heuristics or expertise in process design provided that global optimization techniques are improved to be suitable for large problems.

A State Space Modeling and Evolutionary Programming Approach to Automatic Synthesis of Chemical Processes

  • Choi, Soo-Hyoung;Lee, Bom-Sock;Chung, Chang-Bock
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1870-1873
    • /
    • 2004
  • The objective of this study is to investigate the possibility of chemical process synthesis purely based on mathematical programming when given an objective, feed conditions, product specifications, and model equations for available process units. A method based on a state space approach is proposed, and applied to an example problem with a reactor, a heat exchanger, and a separator. The results indicate that a computer can automatically synthesize an optimal process without any heuristics or expertise in process design provided that global optimization techniques are improved to be suitable for large problems.

  • PDF