• Title/Summary/Keyword: Synthesis Conditions

Search Result 1,535, Processing Time 0.026 seconds

A simulation study on synthesis gas process optimization for GTL (Gas-to-Liquid) pilot plant (GTL 합성유 제조용 파일럿 플랜트 최적 운전 변수 도출을 위한 합성가스 공정 시뮬레이션 연구)

  • Kim, Yong Heon;Bae, Ji Han;Park, Myoung Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.74.2-74.2
    • /
    • 2011
  • A simulation study on synthesis gas process in GTL process was carried out in order to find optimum operation conditions for GTL (gas-to-liquid) pilot plant design. Optimum operating conditions for synthesis gas process were determined by changing reaction variables such as feed temperature and pressure. During the simulation, overall synthesis process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS (Redlich-Kwong-Soave) equation. The effect of temperature and pressure on synthesis gas process $H_2$/CO ratio were mainly examined. Simulation results were also compared to experimental results to confirm the reliability of simulation model. Simulation results were reasonably well matched with experimental results.

  • PDF

Particle Size, Morphology and Color Characteristics of C.I. Pigment Red 57:1 : 1. Effect of Synthesis Conditions

  • Seo, Hee Sung;Lee, Hyun Kyung;Yoo, Eui Sang
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.229-244
    • /
    • 2015
  • The effects of synthesis conditions on characteristics of the calcium-azo complex pigment, C.I. Pigment Red 57:1, were studied. It was mainly considered that the industrially required synthesis conditions for lowering electrical conductivity of the pigment solution keeping pigment quality such as particle size and color characteristics. Three parameters were chosen as control factors during the synthesis. The first was the amount of hydrochloric acid added to transform sodium nitrite into nitrous acid. The second was the amount of calcium chloride added to insolubilize the synthesized azo dye. The final factor was pH control during the coupling reaction. The electrical conductivity and pigment aggregate particle size were dependent on the amount of hydrochloric acid and calcium chloride. Higher HCl concentration gave brighter yellowish-red color because of smaller particle aggregate size and narrower size distribution. Amount of charged ions in the synthesis process might affect the "lake" formation resulting different particle aggregate size and color shade.

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane

  • Son, Moon;Choi, Hyeongyu;Liu, Lei;Park, Hosik;Choi, Heechul
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • Different types of polyethersulfone (PES) support layer for a thin film composite (TFC) membrane were synthesized under various synthesis conditions using the phase inversion method to study the combined effects of substrate, adhesive, and pore former. The permeability, selectivity, pore structure, and morphology of the prepared membranes were analyzed to evaluate the membrane performance. The combined use of substrate, adhesive, and pore former produced a thinner dense top layer, with more straight finger-like pores. The pure water permeation (PWP) of the optimized PES membrane was $27.42L/m^2hr$ (LMH), whereas that of bare PES membrane was 3.24 LMH. Moreover, membrane selectivity, represented as divalent ion ($CaSO_4$) rejection, was not sacrificed under the synthesis conditions, which produced the dramatically enhanced PWP. The high permeability and selectivity of the PES membrane produced under the optimized synthesis conditions suggest that it can be utilized as a potential support layer for TFC membranes.

A simulation study on synthesis gas process optimization for FT(Fischer-Tropsh) synthesis (FT(Fischer-Tropsh) 합성유 제조를 위한 합성가스 공정 최적화 연구)

  • Kim, Yong-Heon;Lee, Won-Su;Lee, Heoung-Yeoun;Koo, Kee-Young;Song, In-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.888-888
    • /
    • 2009
  • A simulation study on SCR (Steam Carbon dioxide Reforming) process in gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) process was carried out in order to find optimum reaction conditions for GTL (gas-to-liquid) process reaction. Optimum SCR operating conditions for synthesis gas to FT (Fischer-Tropsch) process were determined by changing reaction variables such as feed temperature and pressure. During the simulation, overall synthesis process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS (Redlich-Kwong-Soave) equation. SCR process was considered as reaction models for synthesis gas in GTL proess. The effect of temperature and pressure on SCR process $H_2$/CO ratio and the effect of reaction pressure on SCR reaction were mainly examined. Simulation results were also compared to experimental results to confirm the reliability of simulation model. Simulation results were reasonably well matched with experimental results.

  • PDF

Synthesis Conditions and Rheological Characteristics of Aluminum Phosphate (인산 알루미늄의 합성조건과 유동학적 특성)

  • 신화우;안세민;정동훈;강태욱;이광표
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.319-325
    • /
    • 1991
  • Aluminum phosphate gel was synthesized by reacting aluminum sulfate as a soluble aluminum salt to tribasic sodium phosphate in this study. The optimal synthesis conditions based on the yield of product were investigated by applying Box-Wilson experimental design. It was found that optimal synthesis conditions were as follows: Reaction temperature; $61~71^{\circ}C$, concentration of two reactants; 12.27~13.83%, concentration ratio of two reactants; [AI$_{2}$(SO$_{4}$)$_{3}$]/[Na$_{3}$PO$_{4}$]= 0.5, reaction time; 10.9~12.1 minutes, drying temperature of product; $60~72^{\circ}C$. Aluminum phosphate gel prepared by the optimal synthesis conditions was suspended with four types of natural and synthetic gums at the concentration of 0.375~1.5wv%. Their Theological properties of aluminum phosphate gels were examined with Haake-Rotovisco RV 20 rotational viscometer. It showed that the higher concentration of suspending agents and lower temperature, the higher viscosity. Aluminum phosphate gel suspended by pectin and agar showed plastic flow with rheopexy, and their gels suspended by sodium alginate and sod. CMC showed plastic flow with thixotropy.

  • PDF

Synthesis Conditions of Magaldrate and Rheological Characteristics of its Aqueous Suspensions (마갈드레이트의 합성조건과 그 현탁액의 유동학적 특성)

  • Shin, Wha-Woo;Choi, Kwang-Sik
    • YAKHAK HOEJI
    • /
    • v.40 no.1
    • /
    • pp.25-35
    • /
    • 1996
  • Magaldrate. an antiacid was synthesized by reacting magnesium oxide, aluminum sulfate, and dried aluminum hydroxide gel. The optimum synthesis conditions based on the yield of t he product were established by applying Box-Wilson experimental design. It was found that the optimum synthesis conditions of Magaldrate were as follows: Reaction temperature; 61~$85{\circ}C$, concentration of two reactants. Mgo and $Al(OH)_3$: 16~19.8%, molar concentration ratio of two reactants, [MgO]/[$Al(OH)_3$]; 4.2~5.0, temperature of washing water; 36~$41^{\circ}C$ and drying temperature of the product: 76~$80^{\circ}C$. Magaldrate was synthesized under the optimum synthesis conditions and identified by analyzing the chemical composition, and by differential scanning calorimetry and X-ray diffraction method. The Magaldrate sample synthesis under these conditions was used to prepare 15.6% Magaldrate original suspension which was utilized to make 13% Magaldrate suspension dispered in various concentrations of eight types of suspending agents. The acid-neutralizing capacity of 13% Magaldrate suspension dispersed in 0.25% suspending agents was examined by Rosset-Rice method. The maximum pH was reached within 1 minute in all suspension tested, and duration maintained between pH 3~5 was decreased in the order of Na alginate Na silicate(meta) Veegum HV pectin agar>Na>CMC>xanthan gum>bentonite. It was found that the hysteresis loop area was increased with temperature in the case of Riopan Plus and the addition of agar, whereas the area was decreased with temperature in the case of the addition of Na alginate and xanthan gum. 13% Magaldrate suspension tends to sediment by the addition of bentonite.

  • PDF

Data Avaliability Scheduling for Synthesis Beyond Basic Block Scope

  • Kim, Jongsoo
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • High-Level synthesis of digital circuits calls for automatic translation of a behavioral description to a structural design entity represented in terms of components and connection. One of the critical steps in high-level synthesis is to determine a particular scheduling algorithm that will assign behavioral operations to control states. A new scheduling algorithm called Data Availability Scheduling (DAS) for high-level synthesis is presented. It can determine an appropriate scheduling algorithm and minimize the number of states required using data availability and dependency conditions extracted from the behavioral code, taking into account of states required using data availability and dependency conditions extracted from the behavioral code, taking into account resource constraint in each control state. The DAS algorithm is efficient because data availability conditions, and conditional and wait statements break the behavioral code into manageable pieces which are analyzed independently. The output is the number of states in a finite state machine and shows better results than those of previous algorithms.

  • PDF

Optimal Synthesis Conditions of Hydrotalcite (II) (히드로탈시트의 최적 합성조건 (II))

  • 신화우;박형민
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.23-28
    • /
    • 2001
  • Hydrotalcite was prepared by reacting with sodium carbonate, magnesium hydroxide and aluminum chloride solutions in this study. The optimum synthesis conditions based on the yield of the product were established by applying Box-Wilson experimental design. It was found that the optimum synthesis conditions of hydrotalcite were as follows ; reacting temperature : 63~9$0^{\circ}C$, concentration of reactant solution : 18.20~19.82%, molar concentration ratio of two reactants [Mg(OH)$_2$] / (AICl$_3$.6$H_2O$) : 6.0, temperature of washing water : 29.0-34.4$^{\circ}C$, drying temperature : 56-77.6$^{\circ}C$. The physicochemical properties of hydrotalcite as medicine were studied by use of chemical analysis, bulk volume test and acid consuming capacity measurements.

  • PDF

Optimal Conditions for Hydrotalcite Synthesis (히드로탈시트의 최적 합성조건)

  • 신화우;박형민;안세민
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.689-695
    • /
    • 1999
  • Hydrotalcite was prepared by reacting with sodium carbonate, magnesium oxide and aluminum sulfate solutions in this study. The optimum synthesis conditions based on the yield of the product were established by applying Box-Wilson experimental design. It was found that the optimum synthesis conditions of hydrotalcite were as follows; reacting temperature : 48~63$^{\circ}C$, concentration of reactant solution : about 20%, molar concentration ratio of two reactants [MgO]/[Al. sulfate] ; 7.35~8.1, temperature of washing water : 34.4~37.4$^{\circ}C$, drying temperature : 74~81.5$^{\circ}C$. The physicochemical properties of hydrotalcite as medicine were studied by use of chemical analysis, D.S.C. thermogram, bulk volume test and acid consuming capacity measurements.

  • PDF

Optimization of Benzene Synthesis for Radicarbon Dating by Response Surface Method

  • 나경임;강형태;김승원;최상원;김윤섭;김순옥
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.703-706
    • /
    • 1997
  • Response surface method was applied to the predicting optimum conditions of benzene synthesis for radiocarbon dating. The weight of carbon dioxide, the temperature of lithium container for producing acetylene and the activation temperature of catalyst which was used for the cyclization of acetylene to benzene were used as experimental factors. The yields of benzene synthesis were measured from twelve experiments which were carried out under various experimental conditions. The polynomial equation was obtained by using three experimental factors and yields. The validity of polynomial equation was confirmed by comparing the calculated yields with the experimental ones.