• Title/Summary/Keyword: Syntactic Word Similarity

Search Result 12, Processing Time 0.022 seconds

문장 및 어절 유사도를 이용한 표절 탐지 시스템 구현 (Implementation of A Plagiarism Detecting System with Sentence and Syntactic Word Similarities)

  • 맹주수;박지수;손진곤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권3호
    • /
    • pp.109-114
    • /
    • 2019
  • 기존 표절 탐지 시스템은 형태소 분석을 기반으로 공통 단어의 빈도수를 이용해 문서의 유사도를 측정한다. 그러나 주제가 같아 유사 단어가 많이 쓰인 경우, 문장 단위로 일부만 발췌 표절한 경우, 그리고 조사와 어미의 유사성이 있는 경우는 공통 단어의 빈도수만으로는 정확한 유사도를 측정하는데 한계가 있다. 따라서 본 논문에서는 공통 단어 빈도수 기반의 유사도 측정 외에 문장 유사도와 어절 유사도를 추가적으로 측정해 유사도의 정확성을 높일 수 있는 표절 탐지 시스템을 설계하고 구현하였다. 실험 결과, 문장 유사도를 측정함으로써 문장 단위로 표절이 이루어진 경우를 발견할 수 있었고, 어절 유사도를 추가로 측정함으로써 부분표절이 일어난 경우라도 조사나 어미까지 그대로 사용한 표절의 경우 등을 발견할 수 있었다.

구문의미 분석을 활용한 복합 문단구분 시스템에 대한 연구 (Research on the Hybrid Paragraph Detection System Using Syntactic-Semantic Analysis)

  • 강원석
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.106-116
    • /
    • 2021
  • To increase the quality of the system in the subjective-type question grading and document classification, we need the paragraph detection. But it is not easy because it is accompanied by semantic analysis. Many researches on the paragraph detection solve the detection problem using the word based clustering method. However, the word based method can not use the order and dependency relation between words. This paper suggests the paragraph detection system using syntactic-semantic relation between words with the Korean syntactic-semantic analysis. This system is the hybrid system of word based, concept based, and syntactic-semantic tree based detection. The experiment result of the system shows it has the better result than the word based system. This system will be utilized in Korean subjective question grading and document classification.

문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역 (Clustering-based Statistical Machine Translation Using Syntactic Structure and Word Similarity)

  • 김한경;나휘동;이금희;이종혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권4호
    • /
    • pp.297-304
    • /
    • 2010
  • 통계기계번역에서 번역성능의 향상을 위해서 문장의 유형이나 장르에 따라 클러스터링을 수행하여 도메인에 특화된 번역을 시도하는 방법이 있다. 그러나 기존의 연구 중 문장의 유형 정보와 장르에 따른 정보를 동시에 사용한 경우는 없었다. 본 논문에서는 각 문장의 문법적 구조 유사도에 따른 유형별분류 기법과, 단어 유사도 정보를 사용한 장르 구분법을 적용하여 기존의 두 기법을 통합하였다. 이렇게 분류된 말뭉치에서 추출한 도메인 특화 모델과 전체 말뭉치에서 추출된 모델에서 보간법(interpolation)을 사용하여 통계기계번역의 성능을 향상하였다. 문장구조 유사도와 단어 유사도의 계산 방법으로는 각각 커널과 코사인 유사도를 적용하였으며, 두 유사도를 적용하여 말뭉치를 분류하는 과정에서는 K-Means 알고리즘과 유사한 기계학습 기법을 사용하였다. 이를 일본어-영어의 특허문서에서 실험한 결과 최선의 경우 약 2.5%의 상대적인 성능 향상을 얻었다.

어휘망(U-WIN)의 구문관계 자동구축 (Automatic Construction of Syntactic Relation in Lexical Network(U-WIN))

  • 임지희;최호섭;옥철영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권10호
    • /
    • pp.627-635
    • /
    • 2008
  • 본 연구에서는 사용자 어휘지능망(U-WIN)의 어휘 관계 중의 하나인 구문관계를 자동으로 구축하는 방법을 제시하고자 한다. 먼저, 구문관계를 형성할 수 있는 후보명사를 용언의 용례에서 문형 정보를 기준으로 추출함으로써, 용언의 세분화된 의미별로 정확하고 다양한 후보명사를 추출할 수 있다. 그러나 추출된 후보명사는 다양한 의미를 지니고 있으므로, 어휘간의 명확한 구문관계를 설정하기 위해서는 후보명사의 여러 의미 중에서 정확한 의미로 결정해야 한다. 그래서 본 연구에서는 용례 매칭 규칙, 구문 패턴, 의미 유사도, 빈도 정보 등을 이용하여 후보명사의 의미를 분별한다. 또한 구문패턴의 빈도 정보를 이용하여 용례에 나타나지 않지만 구문관계를 형성할 수 있는 명사를 추출하여 구문관계를 확장하고자 하였다. 이러한 연구는 명사 중심의 어휘망이 용언과의 구문관계 구축을 통해 형태소 분석, 구문 분석, 의미분석 등에 광범위하게 활용할 수 있는 어휘망의 기반을 다지는 작업이 될 수 있을 것이다.

A Study on Word Vector Models for Representing Korean Semantic Information

  • Yang, Hejung;Lee, Young-In;Lee, Hyun-jung;Cho, Sook Whan;Koo, Myoung-Wan
    • 말소리와 음성과학
    • /
    • 제7권4호
    • /
    • pp.41-47
    • /
    • 2015
  • This paper examines whether the Global Vector model is applicable to Korean data as a universal learning algorithm. The main purpose of this study is to compare the global vector model (GloVe) with the word2vec models such as a continuous bag-of-words (CBOW) model and a skip-gram (SG) model. For this purpose, we conducted an experiment by employing an evaluation corpus consisting of 70 target words and 819 pairs of Korean words for word similarities and analogies, respectively. Results of the word similarity task indicated that the Pearson correlation coefficients of 0.3133 as compared with the human judgement in GloVe, 0.2637 in CBOW and 0.2177 in SG. The word analogy task showed that the overall accuracy rate of 67% in semantic and syntactic relations was obtained in GloVe, 66% in CBOW and 57% in SG.

구문의미트리 비교기를 이용한 주관식 문항 채점 시스템에 대한 연구 (Research on Subjective-type Grading System Using Syntactic-Semantic Tree Comparator)

  • 강원석
    • 컴퓨터교육학회논문지
    • /
    • 제21권6호
    • /
    • pp.83-92
    • /
    • 2018
  • 주관식 문항은 깊이 있는 사고능력 평가와 고등정신능력 평가에 적합하나 채점하기가 쉽지 않다. 동일한 채점기준을 갖더라도 채점자에 따라 다른 채점결과를 가져올 수 있으므로 객관적인 자동 채점 시스템이 필요하다. 그렇지만 채점 시스템은 표현 언어인 한국어 분석과 비교의 문제가 걸려있다. 본 연구는 한국어의 구문 분석을 구현하고 결과인 구문분석 트리를 비교하는 비교기를 이용하여 주관식 문항을 채점하는 채점 시스템을 설계, 개발하였다. 이 시스템은 단어 중심의 채점 시스템과 구문의미트리 중심의 채점 시스템을 복합한 시스템으로 구문의미트리 비교기를 활용하였다. 본 시스템의 실험 결과 제안한 구문의미트리 중심의 채점 시스템과 복합 채점 시스템이 더 나은 결과를 가져옴을 알 수 있었다. 본 연구는 한국어 구문의미분석과 주관식 채점 영역에 활용할 수 있고 또한 문서 분류에도 활용할 수 있을 것이다.

컬러 분포와 WordNet상의 유사도 측정을 이용한 의미적 이미지 검색 (Semantic Image Retrieval Using Color Distribution and Similarity Measurement in WordNet)

  • 최준호;조미영;김판구
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.509-516
    • /
    • 2004
  • 의미기반 이미지 검색에서의 의미적 내용 인식은 주석 위주의 텍스트 정보를 이용하는 것이 일반적이다. 이러한 텍스트 정보 기반 이미지 검색은 전통적인 검색 방법인 키워드 검색 기술을 그대로 사하여 쉽게 구현할 수 있으나, 텍스트의 개념적 매칭이 아닌 스트링 매칭이므로 주석 처리된 단어와 정확한 매칭이 없다면 검색할 수 없는 단점이 있었다. 이에 본 논문에서는 Ontology의 일종인 WordNet을 이용하여 깊이, 정보량, 링크 타입, 밀도 등을 고려한 단어간 의미 유사도를 측정하여 패턴 매칭의 문제점을 해결하고자 한다. 또한, 이미지의 컬러 분포 유사도를 측정하여 저차원 특징과 결합한 의미적 이미지 검색이 가능하도록 설계하였다. 제안된 검색 방안에 대해 'Microsoft Design Gallery Live'의 주석을 포함한 이미지를 대상으로 실험한 결과, 기존 의미기반 검색 시스템보다 향상된 결과를 확인하였다.

시맨틱 구문 트리 커널을 이용한 생명공학 분야 전문용어간 관계 식별 및 분류 연구 (A Study on the Identification and Classification of Relation Between Biotechnology Terms Using Semantic Parse Tree Kernel)

  • 최성필;정창후;전홍우;조현양
    • 한국문헌정보학회지
    • /
    • 제45권2호
    • /
    • pp.251-275
    • /
    • 2011
  • 본 논문에서는 단백질 간 상호작용 자동 추출을 위해서 기존에 연구되어 높은 성능을 나타낸 구문 트리 커널을 확장한 시맨틱 구문 트리 커널을 제안한다. 기존 구문 트리 커널의 문제점은 구문 트리의 단말 노드를 구성하는 개별 어휘에 대한 단순 외형적 비교로 인해, 실제 의미적으로는 유사한 두 구문 트리의 커널 값이 상대적으로 낮아지는 현상이며 결국 상호작용 자동 추출의 전체 성능에 악영향을 줄 수 있다는 점이다. 본 논문에서는 두 구문 트리의 구문적 유사도(syntactic similarity)와 어휘 의미적 유사도(lexical semantic similarity)를 동시에 효과적으로 계산하여 이를 결합하는 새로운 커널을 고안하였다. 어휘 의미적 유사도 계산을 위해서 문맥 및 워드넷 기반의 어휘 중의성 해소 시스템과 이 시스템의 출력으로 도출되는 어휘 개념(WordNet synset)의 추상화를 통한 기존 커널의 확장을 시도하였다. 실험에서는 단백질 간 상호작용 추출(PPII, PPIC) 성능의 심층적 최적화를 위해서 기존의 SVM에서 지원되던 정규화 매개변수 외에 구문 트리 커널의 소멸인자와 시맨틱 구문 트리 커널의 어휘 추상화 인자를 새롭게 도입하였다. 이를 통해 구문 트리 커널을 적용함에 있어서 소멸인자 역할의 중요성을 확인할 수 있었고, 시맨틱 구문 트리 커널이 기존 시스템의 성능향상에 도움을 줄 수 있음을 실험적으로 보여주었다. 특히 단백질 간 상호작용식별 문제보다도 비교적 난이도가 높은 상호작용 분류에 더욱 효과적임을 알 수 있었다.

문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안 (Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity)

  • 이민석;양석우;이홍주
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.105-122
    • /
    • 2019
  • 텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.

Resolving Multi-Translatable Verbs Japanese-TO-Korean Machine Translation

  • Kim Jung-In;Lee Kang-Hyuk
    • 한국멀티미디어학회논문지
    • /
    • 제8권6호
    • /
    • pp.790-797
    • /
    • 2005
  • It is well-known that there are many similarities between Japanese and Korean language. For example, the order of words and the nature of the grammatical conjugation of both languages are almost the same. Another similarity is the frequent omission of the subject from a sentence. Moreover, both languages have honorific expressions and the identical concept for expressing nouns in terms of Chinese characters. Using these similarities, we have developed a word-to-word translation system which does away with any deep level analysis of syntactic and semantic structures of the two languages. If we use these similarities, the direct translation method is superior to the internal language translation method or transfer-based translation method. Although the MT system based on the direct translation method is more easily developed than the ones based on other methods, it may have a lot of difficulties when it tries to select the appropriate target word from ambiguous source verbs. In this paper, we propose a new algorithm to extract the meaning of substantives and to make use of the order of the extracted meaning. We could select $86.5\%$ appropriate verbs in the sample sentences from IPAL-verb-dictionary. $13.5\%$ indicates the cases in which we could not distinguish the meaning of substantives. We are convinced, however, that the succeeding rate can be increased by getting rid of the meaning of verbs thatare not used so often.

  • PDF