• Title/Summary/Keyword: Synoptic weather analysis

Search Result 98, Processing Time 0.026 seconds

Dominant Synoptic Patterns Controlling PM10 Spatial Variabilities over the Korean Peninsula

  • Park, Hyo-Jin;Wie, Jieun;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.476-486
    • /
    • 2019
  • This study examines the controlling role of synoptic disturbances on $PM_{10}$ spring variability in the Korean Peninsula by using empirical orthogonal function (EOF) and back trajectory analyses. Three leading EOF modes are identified, and a lead-lag analysis suggests that $PM_{10}$ variabilities be closely related to the synoptic weather systems. The first EOF shows the spatially homogeneous distribution of $PM_{10}$, which is influenced by travelling anticyclonic disturbance with negative precipitation and descending motion. The second and third modes exhibit the dipole structures of $PM_{10}$, being associated with propagating cyclones. Furthermore, the back-trajectory analysis suggests that the transport of pollutants by anomalous winds associated with synoptic disturbances also contribute to the altered $PM_{10}$ concentration. Hence, a substantial synoptic control should be considered in order to fully understand the $PM_{10}$ spatiotemporal variability.

A Study on the Synoptic Structural Characteristics of Heavy Snowfall Event in Yeongdong Area that Occurred on 20 January, 2017 (2017년 1월 20일 발생한 강원 영동대설 사례에 대한 대기의 구조적 특성 연구)

  • Ahn, Bo-Young;Lee, Jeong-sun;Kim, Baek-Jo;Kim, Hui-won
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.765-784
    • /
    • 2019
  • The synoptic structural characteristics associated with heavy snowfall (Bukgangneung: 31.3 cm) that occurred in the Yeongdong area on 20 January 2017 was investigated using surface and upper-level weather charts, European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data, radiosonde data, and Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product. The cold dome and warm trough of approximately 500 hPa appeared with tropopause folding. As a result, cold and dry air penetrated into the middle and upper levels. At this time, the enhanced cyclonic potential vorticity caused strong baroclinicity, resulting in the sudden development of low pressure at the surface. Under the synoptic structure, localized heavy snowfall occurred in the Yeongdong area within a short time. These results can be confirmed from the vertical analysis of radiosonde data and the characteristics of the MODIS cloud product.

Long-range Transport Mechanisms of Asian Dust associated with the Synoptic Weather System

  • Kim, Yoo-Keun;Lee, Hwa-Woon;Moon, Yun-Seob;Song, Sang-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.197-206
    • /
    • 2001
  • The long-range transport mechanisms of Asian dust were analyzed based on the synoptic weather system and numerical simulation by using NCEP/NCAR reanalysis and TOMS data during the periods of 1996-2001. We classified the whole weather types of eastern Asia during spring and created the representative weather types during the yellow sand events using cluster analysis and weather charts for the last 6 years(1996~2001). These long-range transport mechanisms were related to various pressure patterns including high and low, trough and ridge, and upper-level fronts. Case studies of the yellow sand events have performed by the simulation of MM5 with meteorological elements such as the horizontal wind of u and v component, potential temperature, potential vorticity, and vertical circulation during the episodic days(2~8 March 2001). In addition, the origin of the long-range transport was examined with the estimation of backward trajectory using HYSPLIT4 Model. In this paper, we concluded that three weather types at 1000 hPa, 850 hPa, 500 hPa, and 300 hPa levels were classified respectively. The dominant features were the extending continental outflow from China to Korea at 1000 hPa and 850 hPa levels, the deep trough passage and cold advection at 500 hPa and 300 hPa levels during the yellow sand events. And also, we confirmed the existence of pola $r_tropical jets in the upper-level, the behavior of potential vorticity over Korea, the estimation of potential vorticity through vertical cross section, and the transport of yellow sand through backward trajectories.es.

  • PDF

Atmospheric Analysis on the Meteo-tsunami Case Occurred on 31 March 2007 at the Yellow Sea of South Korea (2007년 3월 31일 서해에서 발생한 기상해일에 대한 기상학적 분석)

  • Kim, Hyunsu;Kim, Yoo-Keun;Woo, Seung-Buhm;Kim, Myung-Seok
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.1999-2014
    • /
    • 2014
  • A meteo-tsunami occurred along the coastline of South Korea on 31 March 2007, with an estimated maximum amplitude of 240 cm in Yeonggwang (YG). In this study, we investigated the synoptic weather systems around the Yellow sea including the Bohai Bay and Shandong Peninsula using a weather research and forecast model and weather charts of the surface pressure level, upper pressure level and auxiliary analysis. We found that 4-lows passed through the Yellow sea from the Shandung Peninsula to Korea during 5 days. Moreover, the passage of the cold front and the locally heavy rain with a sudden pressure change may make the resonance response in the near-shore and ocean with a regular time-lag. The sea-level pressure disturbance and absolute vorticity in 500 hPa projected over the Yellow sea was propagated with a similar velocity to the coastline of South Korea at the time that meteo-tsunami occurred.

Numerical forecasting of sea fog at West sea in spring (봄철 서해안 해무의 수치예보)

  • Han, Kyoung-Keun;Kim, Young-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.94-100
    • /
    • 2006
  • The purpose of this case study is to determine the possibility of Numerical Forecasting of sea fog at West Sea in spring time. For practical method of analyzing the data collected from 24th to 26th March 2003, Numerical Weather Prediction model MM5(Mesoscale Model Version 5) and synoptic field study using synoptic chart, upper level chart, and sea surface temperature were employed. The results of synoptic field analysis summarized that sea fog at West sea in spring is intensified by the inflow of the warm flow from west or southwest, low sea surface temperature to increase the temperature difference between air and sea surface, and inversion layer to disturb the disperse. It appears that the possibility of sea fog forecasting by MM5, in view of the result that the MM5 output is similar to the synoptic fields analysis.

  • PDF

TOVS retrieved data with the real time synoptic surface data (종관 지상 자료를 이용한 TOVS수치 해석 산출 자료)

  • 주상원;정효상;김금란
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.1
    • /
    • pp.55-67
    • /
    • 1994
  • The International TOVS(TIROS Oprational Vertical Sounders) Process Package(ITPP-VI)is for a global usage, which needs a surface data to generate atmospheric soundings. If the initial input process in the ITPP-VI is not modified, it takes climatic surface data for producing sounding data in general. Korea Meteorological Administration(KMA) is trying to improve the quality of TOVS sounding data using real-time synoptic observations and make a use weather prediction and analysis in various ways. Serval cases in this study show that TOVS retrieved meteolorogical parameters such as atmopheric temperature, dew point depression and geopotential heights used by synoptic surface observations can delineate more detailed atmospheric feature rather than those used by climate surface data. In addition, the collocated comparisons of TOVS synoptic retrieved parameters with radiosonde observations are performed statistically. TOVS retrieved fields with the synoptic surface analyzed data show smaller bias reatively than those with the climatic data and also reduced root mean square differences below 700 hPa as expected.

A Study on Quality Control Method for Minutely Rainfall Data (분 단위 강우자료의 품질 개선방안에 관한 연구)

  • Kim, Min-Seok;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.319-326
    • /
    • 2015
  • Rainfall data is necessary component for water resources design and flood warning system. Most analysis are used long-term hourly data of surface synoptic stations from the Meteorological Administration, Ministry of land, Infrastructure and Transport and others. However, It will be used minutely data of more high density automatic weather stations than surface synoptic stations expecting to increase the frequency of heavy precipitation. But minutely data has a problem about quality of rainfall data by auto observation. This study analyzed about quality control method using automatic weather station's minutely rainfall data of meteorological administration. It was performed assessment of the quality control that was classified quality control of miss Data, outlier data and rainfall interpolation. This method will be utilized when hydrological analysis uses minute rainfall data.

Classification of Heat Wave Events in Seoul Using Self-Organizing Map (자기조직화지도를 이용한 서울 폭염사례 분류 연구)

  • Back, Seung-Yoon;Kim, Sang-Wook;Jung, Myung-Il;Roh, Joon-Woo;Son, Seok-Woo
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.209-221
    • /
    • 2018
  • The characteristics of heat wave events in Seoul are analyzed using weather station data from Korea Meteorological Administration (KMA) and European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data from 1979 to 2016. Heat waves are defined as events in the upper 10th percentile of the daily maximum temperatures. The associated synoptic weather patterns are then classified into six clusters through Self-Organizing Map (SOM) analysis for sea-level pressure anomalies in East Asia. Cluster 1 shows an anti-cyclonic circulation and weak troughs in southeast and west of Korea, respectively. This synoptic pattern leads to southeasterly winds that advect warm and moist air to the Korean Peninsula. Both clusters 2 and 3 are associated with southerly winds formed by an anti-cyclonic circulation over the east of Korea and cyclonic circulation over the west of Korea. Cluster 4 shows a stagnant weather pattern with weak winds and strong insolation. Clusters 5 and 6 are associated with F?hn wind resulting from an anti-cyclonic circulation in the north of the Korean Peninsula. In terms of long-term variations, event frequencies of clusters 4 and 5 show increasing and decreasing trends, respectively. However, other clusters do not show any long-term trends, indicating that the mechanisms that drive heat wave events in Seoul have remained constant over the last four decades.

An Analysis on the Spatial Scale of Yeongdong Cold Air Damming (YCAD) in Winter Using Observation and Numerical Weather Model (관측과 모델 자료를 활용한 겨울철 영동지역 한기 축적(Yeongdong Cold Air Damming; YCAD)의 공간 규모 분석)

  • Nam, Hyoung-Gu;Jung, Jonghyeok;Kim, Hyun-Uk;Shim, Jae-Kwan;Kim, Baek-Jo;Kim, Seung-Bum;Kim, Byung-Gon
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.183-193
    • /
    • 2020
  • In this study, Yeongdong cold air damming (YCAD) cases that occur in winters have been selected using automatic weather station data of the Yeongdong region of Korea. The vertical and horizontal scales of YCAD were analyzed using rawinsonde and numerical weather model. YCAD occurred in two typical synoptic patterns such that low pressure and trough systems crossing and passing over Korea (low crossing type: LC and low passing type: LP). When the Siberian high does not expand enough to the Korean peninsula, low pressure and trough systems are likely to move over Korea. Eventually this could lead to surface temperature (3.1℃) higher during YCAD than the average in the winter season (1.6℃). The surface temperature during YCAD, however, was decrease by 1.3℃. The cold air layer was elevated around 120 m~450 m for LP-type. For LC-type, the cold layer were found at less than approximately 400 m and over 1,000 m, which could be thought of combined phenomena with synoptic and local weather forcing. The cross-sectional analysis results indicate the accumulation of cold air on the east mountain slope. Additionally, the north or northeasterly winds turned to the northwesterly wind near the coast in all cases. The horizontal wind turning point of LC-type was farther from the top of the mountain (52.2 km~71.5 km) than that of LP-type (20.0 km~43.0 km).

Characteristics of Ozone Advection in Vertical Observation Analysis Around Complex Coastal Area (연직관측자료를 통한 복잡 연안지역의 오존 이류특성)

  • Lee, Hwa-Woon;Park, Soon-Young;Lee, Soon-Hwan;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.57-74
    • /
    • 2009
  • In order to clarify the vertical ozone distribution in planetary boundary layer of coastal area with complex terrain, an observation campaign was carried out around Gwangyang Bay with dense pollutant emission sources during two days from June, 4 2007. For this observation are Radiosonde, SODAR(SOnic Detection And Ranging) and Tethered ozone sonde were employed. The surface meteorological and photochemical observation data provided by AWS (Automatic Weather System) and AQMS (Air Quality Monitoring System) were also applied for analysis. Synoptic condition is strongly associated with lower level ozone distribution in complex terrain coastal area. Since mesoscale circulation induced by difference of characteristics of land and sea and orographic forcing is predominant under calm synoptic condition, vertical distribution of ozone is complicate and vertical ozone concentration greatly fluctuated. However in second day when synoptic influence become strong, ozone concentration in lower levels is vertically uniform regardless of observation level. This results in vertical observation indicates that vertical ozone distribution is often determined by synoptic condition and also affects surface ozone concentration.